2023-2024学年湖北省襄阳市普通高中高考冲刺数学模拟试题注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数(),则函数的值域为()A.B.C.D.2.下列与函数定义域和单调性都相同的函数是()A.B.C.D.3.已知数列中,,(),则等于()A.B.C.D.2D.4.已知复数满足,则()A.B.C.5.已知A.,则下列不等式正确的是()B.C.D.6.以,为直径的圆的方程是A.B.C.D.7.已知,,,,则()A.B.C.D.8.函数(或)的图象大致是()A.B.C.D.9.一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是()A.B.C.D.10.已知等差数列的前项和为,,,则()A.25B.32C.35D.4011.函数(),当时,的值域为,则的范围为()A.B.C.D.12.已知,,则等于().A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在一个倒置的高为2的圆锥形容器中,装有深度为的水,再放入一个半径为1的不锈钢制的实心半球后,半球的大圆面、水面均与容器口相平,则的值为____________.14.已知“在中,”,类比以上正弦定理,“在三棱锥中,侧棱与平面所成的角为、与平面所成的角为,则________.15.函数的定义域为,其图象如图所示.函数是定义域为的奇函数,满足,且当时,.给出下列三个结论:①;②函数在内有且仅有个零点;③不等式的解集为.其中,正确结论的序号是________.16.将函数的图像向右平移个单位,得到函数的图像,则函数在区间.上的值域为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角,,的对边分别为,,,已知的面积为(1)求;,求的周长.(2)若,18.(12分)已知函数,.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.19.(12分)如图,在中,,的角平分线与交于点,.(Ⅰ)求;(Ⅱ)求的面积.20.(12分)已知函数,.(1)证明:函数的极小值点为1;(2)若函数在有两个零点,证明:.21.(12分)某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量(单位:亿元)对年销售额(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:①,②,其中均为常数,为自然对数的底数.现该公司收集了近12年的年研发资金投入量和年销售额的数据,,并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值.令,经计算得如下数据:(1)设和的相关系数为,和的相关系数为,请从相关系数的角度,选择一个拟合程度更好的模型;(2)(i)根据(1)的选择及表中数据,建立关于的回归方程(系数精确到0.01);(ii)若下一年销售额需达到90亿元,预测下一年的研发资金投入量是多少亿元?附:①相关系数,回归直线中斜率和截距的最小二乘估计公式分别为:,;②参考数据:,,.22.(10分)已知椭圆的离心率为,且过点.(1)求椭圆C的标准方程;轴于Q,线段PQ的中点为M.直线AM与直线(2)点P是椭圆上异于短轴端点A,B的任意一点,过点P作交于点N,D为线段BN的中点,设O为坐标原点,试判断以OD为直径的圆与点M的位置关系.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用换元法化简解析式为二次函数的形式,根据二次函数的性质求得的取值范围,由此求得的值域.【详解】因为(),所以,令(),则(),函数的对称轴方程为,所以,,所以,所以的值域为.故选:B【点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,...