电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

2023-2024学年湖南省炎德英才大联考高考数学全真模拟密押卷含解析.doc

2023-2024学年湖南省炎德英才大联考高考数学全真模拟密押卷含解析.doc_第1页
1/20
2023-2024学年湖南省炎德英才大联考高考数学全真模拟密押卷含解析.doc_第2页
2/20
2023-2024学年湖南省炎德英才大联考高考数学全真模拟密押卷含解析.doc_第3页
3/20
2023-2024学年湖南省炎德英才大联考高考数学全真模拟密押卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等差数列中,,,若(),则数列的最大值是()A.B.C.1D.32.已知集合A={xy=lg(4﹣x2)},B={yy=3x,x>0}时,A∩B=()A.{xx>﹣2}B.{x1<x<2}C.{x1≤x≤2}D.∅3.已知数列的前项和为,且,,,则的通项公式()A.B.C.D.4.曲线上任意一点处的切线斜率的最小值为()A.3B.2C.D.15.设点,,不共线,则“”是“”()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件6.若复数满足,则()A.B.C.D.7.等比数列的前项和为,若,,,,则()A.B.C.D.8.如图,在平行四边形中,对角线与交于点,且,则()A.B.C.D.9.若函数A.有且只有4个不同的零点,则实数的取值范围是()B.C.D.10.将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()A.B.C.D.11.已知等差数列中,若,则此数列中一定为0的是()A.B.C.D.12.若向量,,则与共线的向量可以是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.设全集,集合,,则集合______.14.在的二项展开式中,x的系数为________.(用数值作答)15.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,如图所示的框图给出了利用秦九韶算法求多项式值的一个实例,若输入,的值分別为4,5,则输出的值为______.16.已知向量,,若满足,且方向相同,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)己知圆F1:(x+1)1+y1=r1(1≤r≤3),圆F1:(x-1)1+y1=(4-r)1.(1)证明:圆F1与圆F1有公共点,并求公共点的轨迹E的方程;(1)已知点Q(m,0)(m<0),过点E斜率为k(k≠0)的直线与(Ⅰ)中轨迹E相交于M,N两点,记直线QM的斜率为k1,直线QN的斜率为k1,是否存在实数m使得k(k1+k1)为定值?若存在,求出m的值,若不存在,说明理由.18.(12分)如图,三棱柱中,平面,,,分别为,的中点.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.19.(12分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,,,求证:.20.(12分)设数列,其前项和,又单调递增的等比数列,,.(Ⅰ)求数列,的通项公式;(Ⅱ)若,求数列的前n项和,并求证:.21.(12分)的内角,,的对边分别为,,,已知的面积为.(1)求;(2)若,,求的周长.22.(10分)如图,在平面四边形中,,,.(1)求;面积的最大值.(2)求四边形参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】在等差数列中,利用已知可求得通项公式,进而,借助函数的的单调性可知,当时,取最大即可求得结果.【详解】因为,所以,即,又,所以公差,所以,即,因为函数,在时,单调递减,且;在时,单调递减,且.所以数列的最大值是,且,所以数列的最大值是3.故选:D.【点睛】本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调性研究数列最值问题,难度较易.2、B【解析】试题分析:由集合A中的函数,得到,解得:,∴集合,由集合B中的函数,得到,∴集合,则,故选B.考点:交集及其运算.3、C【解析】利用证得数列为常数列,并由此求得的通项公式.【详...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2023-2024学年湖南省炎德英才大联考高考数学全真模拟密押卷含解析.doc

您可能关注的文档

确认删除?