2023-2024学年湖南省长沙市一中开福中学高考适应性考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是第二象限的角,,则()A.B.C.D.2.已知实数满足线性约束条件,则的取值范围为()A.(-2,-1]B.(-1,4]C.[-2,4)D.[0,4]3.集合,,则()A.4.已知平面B.C.D.平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为()A.B.16C.D.5.已知等差数列的前项和为,若,,则数列的公差为()A.B.C.D.6.已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a的取值范围是()A.B.C.D.7.已知函数,则下列判断错误的是()A.的最小正周期为B.的值域为C.的图象关于直线对称D.的图象关于点对称8.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是().A.B.C.D.9.若满足约束条件则的最大值为()A.10B.8C.5D.310.函数在的图象大致为()A.B.C.D.11.已知B.4,若,则等于()A.3C.5D.612.已知点是双曲线上一点,若点到双曲线的两条渐近线的距离之积为,则双曲线的离心率为()A.B.C.D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知函数.若在区间上恒成立.则实数的取值范围是__________.14.若复数满足,其中是虚数单位,是的共轭复数,则________.15.(5分)函数的定义域是____________.16.若椭圆:的一个焦点坐标为,则的长轴长为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列满足,.(l)求等差数列的通项公式;(2)设,求数列的前项和.18.(12分)在四边形中,,;如图,将沿边折起,连结,使,求证:(1)平面平面;(2)若为棱上一点,且与平面所成角的正弦值为,求二面角的大小.19.(12分)在中,角,,所对的边分别为,,,已知,,角为锐角,的面积为.()与直线相切,求的值.(1)求角的大小;(2)求的值.20.(12分)设为实数,在极坐标系中,已知圆21.(12分)在①;②;③这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在中,内角A,B,C的对边分别为a,b,c,且满足________________,,求的面积.22.(10分)如图所示,已知平面,,为等边三角形,为边上的中点,且.(Ⅰ)求证:面;(Ⅱ)求证:平面平面;(Ⅲ)求该几何体的体积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用诱导公式和同角三角函数的基本关系求出,再利用二倍角的正弦公式代入求解即可.【详解】因为,由诱导公式可得,,即,因为,所以,由二倍角的正弦公式可得,,所以.故选:D【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.2、B【解析】作出可行域,表示可行域内点与定点连线斜率,观察可行域可得最小值.【详解】作出可行域,如图阴影部分(含边界),表示可行域内点与定点连线斜率,,,过与直线平行的直线斜率为-1,∴.故选:B.【点睛】表示动点与定点本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题连线斜率,由直线与可行域的关系可得结论.3、A【解析】解一元二次不等式化简集合A,再根据对数的真数大于零化简集合B,求交集运算即可.【详解】由可得,所以,由可得,所以,所以,故选A.【点睛】本题主要考查了集合的交集运算,涉及一元二次不等式解法及对数的概念,属于中档题.4、C【解析】根据与平面所成的角相等,判断出,建立平面直角坐标系,求得点的轨迹方程,由此求得点的轨迹长度.【详解】由于平面平面,且交线为,,所以平面,平面.所以...