2023-2024学年湖南省长沙市长沙县九中高三第四次模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是平面内互不相等的两个非零向量,且与的夹角为,则的取值范围是()A.B.C.D.2.马林●梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p﹣1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡献,将形如2P﹣1(其中p是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是()A.3B.4C.5D.63.已知椭圆(a>0,b>0)的焦点相同,则双曲线渐近线方程为()(a>b>0)与双曲线A.B.C.D.,则的取值范围为()4.若时,A.B.C.D.5.已知等差数列的前项和为,,,则()A.25B.32C.35D.406.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则().A.B.C.D.7.如图,平面四边形中,,,,,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A.B.C.D.8.已知复数满足,则()A.B.C.D.9.已知椭圆的右焦点为F,左顶点为A,点P椭圆上,且,若,则椭圆的离心率为()A.B.C.D.10.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是()A.甲B.乙C.丙D.丁11.设,满足约束条件,则的最大值是()A.B.C.D.12.曲线在点处的切线方程为,则()A.B.C.4D.8二、填空题:本题共4小题,每小题5分,共20分。13.如图,在一个倒置的高为2的圆锥形容器中,装有深度为的水,再放入一个半径为1的不锈钢制的实心半球后,半球的大圆面、水面均与容器口相平,则的值为____________.14.在中,角,,的对边分别是,,,若,,则的面积的最大值为______.15.平面直角坐标系中,O为坐标原点,己知A(3,1),B(-1,3),若点C满足,其中α,β∈R,且α+β=1,则点C的轨迹方程为16.的展开式中的系数为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱柱的侧棱垂直于底面,且,,,,是棱的中点.(1)证明:;(2)求二面角的余弦值.18.(12分)已知函数,其中为实常数.(1)若存在,使得在区间内单调递减,求的取值范围;(2)当时,设直线与函数的图象相交于不同的两点,,证明:.19.(12分)如图,在三棱柱中,已知四边形为矩形,,,,的角平分线交于.(1)求证:平面平面;(2)求二面角的余弦值.20.(12分)设点,动圆经过点且和直线相切.记动圆的圆心的轨迹为曲线.(1)求曲线的方程;(2)过点的直线与曲线交于、两点,且直线与轴交于点,设,,求证:为定值.21.(12分)设函数f(x)=x﹣a+x(a>0).(1)若不等式f(x)﹣x≥4x的解集为{xx≤1},求实数a的值;(2)证明:f(x).22.(10分)的内角、、所对的边长分别为、、,已知.(1)求的值;(2)若,点是线段的中点,,求的面积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:如下图所示,则,因为与的夹角为,即,所以,设,则,在三角形中,由正弦定理得,所以,所以,故选C.考点:1.向量加减法的几何意义;2.正弦定理;3.正弦函数性质.2、C【解析】模拟程序的运行即可求出答案.【详解】解:模拟程序的运行,可得:p=1,S=1,输出S的值为1,满足条件p≤7,执行循环体,p=3,S=7,输出S的值为7,满足条件p≤7,执行循环体,p=5,S=31,输出S的值为31,满足条件p≤7,执行循环体,p=7,S=127,输出S的值为127,满足条件p...