电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

2023-2024学年湖南省隆回县高考数学二模试卷含解析.doc

2023-2024学年湖南省隆回县高考数学二模试卷含解析.doc_第1页
1/24
2023-2024学年湖南省隆回县高考数学二模试卷含解析.doc_第2页
2/24
2023-2024学年湖南省隆回县高考数学二模试卷含解析.doc_第3页
3/24
2023-2024学年湖南省隆回县高考数学二模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设点是椭圆上的一点,是椭圆的两个焦点,若,则()A.B.C.D.2.已知函数,对任意的,,当时,,则下列判断正确的是()A.B.函数在上递增C.函数的一条对称轴是D.函数的一个对称中心是3.函数,,的部分图象如图所示,则函数表达式为()A.B.C.D.4.已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是()A.B.C.D.5.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数(),则函数的值域为()A.B.C.D.6.执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为()A.B.C.D.7.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为()A.B.C.D.8.刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(如图所示),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到的近似值为()A.B.C.D.中,M为与的交点,若9.在平行六面体,,则与相等的向量是()A.B.C.D.10.已知下列命题:①“”的否定是“”;②已知为两个命题,若“”为假命题,则“”为真命题;③“”是“”的充分不必要条件;④“若,则且”的逆否命题为真命题.其中真命题的序号为()A.③④B.①②C.①③D.②④()11.已知为等差数列,若,,则D.6A.1B.2C.312.设、分别是定义在上的奇函数和偶函数,且,则()A.B.0C.1D.3处的切线方程为___________.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则曲线在点14.已知的展开式中含有的项的系数是,则展开式中各项系数和为______.15.已知函数,若函数有个不同的零点,则的取值范围是___________.16.若函数()的图象与直线相切,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。,点在椭圆上,点在17.(12分)已知椭圆C的中心在坐标原点,其短半轴长为1,一个焦点坐标为直线上,且.(1)证明:直线与圆相切;(2)设与椭圆的另一个交点为,当的面积最小时,求的长.18.(12分)在极坐标系中,曲线的极坐标方程为(1)求曲线与极轴所在直线围成图形的面积;(2)设曲线与曲线交于,两点,求.19.(12分)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;的左、右焦点分别为,,焦距为2,且经过点,(2)AD⊥AC.20.(12分)已知椭圆:斜率为的直线经过点,与椭圆交于,两点.(1)求椭圆的方程;(2)在轴上是否存在点,使得以,为邻边的平行四边形是菱形?如果存在,求出的取值范围,如果不存在,请说明理由.21.(12分)某企业原有甲、乙两条生产线,为了分析两条生产线的效果,先从两条生产线生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值.该项指标值落在内的产品视为合格品,否则为不合格品.乙生产线样本的频数分布表质量指标合计频数2184814162100(1)根据甲生产线样本的频率分布直方图,以从样本中任意抽取一件产品...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2023-2024学年湖南省隆回县高考数学二模试卷含解析.doc

您可能关注的文档

确认删除?