2023-2024学年甘肃省兰州市第五中学高考数学五模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的展开式中的系数为()A.5B.10C.20D.302.已知向量,且,则等于()A.4B.3C.2D.13.下图为一个正四面体的侧面展开图,为的中点,则在原正四面体中,直线与直线所成角的余弦值为()A.B.C.D.4.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为()A.B.C.D.5.设函数满足A.,则的图像可能是B.C.D.6.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为()A.B.C.D.7.是平面上的一定点,是平面上不共线的三点,动点满足,,则动点的轨迹一定经过的()C.外心A.重心B.垂心,当时,D.内心,则8.已知函数满足(),且点的纵A.或B.或C.或D.或9.已知非零向量满足,,且与的夹角为,则()A.6B.C.D.310.点在曲线上,过作轴垂线,设与曲线交于点,坐标始终为0,则称点为曲线上的“水平黄金点”,则曲线上的“水平黄金点”的个数为()A.0B.1C.2D.311.“角谷猜想”的内容是:对于任意一个大于1的整数,如果为偶数就除以2,如果是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入,则输出的()A.6B.7C.8D.912.设集合、是全集的两个子集,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.在中,,,,则绕所在直线旋转一周所形成的几何体的表面积为______________.14.如图,在平面四边形中,,则_________15.函数在上的最小值和最大值分别是_____________.16.已知为等比数列,是它的前项和.若,且与的等差中项为,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,点为圆:上一动点,过点分别作轴,轴的垂线,垂足分别为,,连接延长至点,使得,点的轨迹记为曲线.(1)求曲线的方程;,试问在曲(2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,且线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.18.(12分)如图,在四棱锥已知中,底面,底面是直角梯形,为侧棱上一点,.(Ⅰ)证明:平面平面;(Ⅱ)求二面角的余弦值.19.(12分)已知函数,.(1)当时,求不等式的解集;(2)当时,不等式恒成立,求实数的取值范围.20.(12分)设直线与抛物线交于两点,与椭圆交于两点,设直线(为坐标原点)的斜率分别为,若.(1)证明:直线过定点,并求出该定点的坐标;(2)是否存在常数,满足?并说明理由.21.(12分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)设是椭圆上且不在轴上的一个动点,为坐标原点,过右焦点作的平行线交椭圆于、两个不同的点,求的值.22.(10分)的内角、、所对的边长分别为、、,已知.(1)求的值;(2)若,点是线段的中点,,求的面积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由知,展开式...