2023-2024学年甘肃省武威第十八中学高三3月份模拟考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知符号函数sgnxf(x)是定义在R上的减函数,g(x)=f(x)﹣f(ax)(a>1),则()A.sgn[g(x)]=sgnxB.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)]D.sgn[g(x)]=﹣sgn[f(x)]2.已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为()A.B.C.D.3.已知数列的前项和为,且,,则()A.B.C.D.4.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A.B.C.D.5.已知.给出下列判断:①若,且,则;②存在使得的图象向右平移个单位长度后得到的图象关于轴对称;③若在上恰有7个零点,则的取值范围为;④若在上单调递增,则的取值范围为.其中,判断正确的个数为()A.1B.2C.3D.46.已知向量,是单位向量,若,则()A.B.C.D.7.如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正确的是()A.从2000年至2016年,该地区环境基础设施投资额逐年增加;B.2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.,集合,则等于()8.已知集合B.A.D.C.9.设等比数列的前项和为,若,则的值为()A.B.C.D.10.若数列满足且,则使的的值为()D.A.B.C.对称的点,则的取值范围是()11.函数与的图象上存在关于直线A.B.C.D.12.计算等于()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数对于都有,且周期为2,当时,,则________________________.的右焦点,两点在双曲线上,且关于原点对称,若14.已知点为双曲线,设,且,则该双曲线的焦距的取值范围是________.15.已知椭圆的下顶点为,若直线与椭圆交于不同的两点、,则当_____时,外心的横坐标最大.16.若椭圆:的一个焦点坐标为,则的长轴长为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,是边长为2的等边三角形,,,.(1)证明:平面平面;(2),分别是,的中点,是线段上的动点,若二面角的平面角的大小为,试中点,且确定点的位置.18.(12分)如图,在直三棱柱中,分别是,.求证:平面;求点到平面的距离.19.(12分)已知椭圆与抛物线有共同的焦点,且离心率为,设分别是为椭圆的上下顶点(1)求椭圆的方程;(2)过点与轴不垂直的直线与椭圆交于不同的两点,当弦的中点落在四边形内(含边界)时,求直线的斜率的取值范围.20.(12分)在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为与圆C的交点为O、P,与直线l的交点为Q,极轴建立极坐标系.,射线(1)求圆C的极坐标方程;(2)直线l的极坐标方程是求线段的长.21.(12分)已知函数.(1)证明:当时,;(2)若函数只有一个零点,求正实数的值.22.(10分)如图为某大江的一段支流,岸线与近似满足∥,宽度为.圆为江中的一个半径为的小岛,小镇位于岸线上,且满足岸线,.现计划建造一条自小镇经小岛至对岸的水上通道(图中粗线部分折线段,在右侧),为保护小岛,段设计成与圆相切.设.(1)试将通道的长表示成的函数,并指出定义域;(2)若建造通道的费用是每公里100万元,则建造此通道最少需要多少万元?参考答案一、选择题:本题共12小题...