2023-2024学年福建省厦门市外国语学校高考仿真卷数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为锐角,若,则的值为()A.B.C.D.2.已知方程表示的曲线为的图象,对于函数有如下结论:①在上单调递减;②函数至少存在一个零点;③的最大值为;④若函数和图象关于原点对称,则由方程所确定;则正确命题序号为()A.①③B.②③C.①④D.②④3.已知双曲线C:=1(a>0,b>0)的右焦点为F,过原点O作斜率为的直线交C的右支于点A,若OA=OF,则双曲线的离心率为()A.B.C.2D.+14.已知为抛物线的焦点,点在抛物线上,且,过点的动直线与抛物线交于两点,为坐标原点,抛物线的准线与轴的交点为.给出下列四个命题:①在抛物线上满足条件的点仅有一个;②若是抛物线准线上一动点,则的最小值为;③无论过点的直线在什么位置,总有;④若点在抛物线准线上的射影为,则三点在同一条直线上.其中所有正确命题的个数为()A.1B.2C.3D.4()5.已知向量,,当时,A.B.C.D.6.如图,正方体的底面与正四面体的底面在同一平面上,且,若正方体的六个面所在的平面与直线相交的平面个数分别记为,则下列结论正确的是()A.B.C.D.7.“且”是“”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件8.已知等比数列满足,,则()A.B.C.D.9.已知平面向量,满足,,且,则()A.3B.C.D.510.已知偶函数在区间内单调递减,,,,则,,满足()A.B.C.D.11.如图,在四边形中,,,,,,则的长度为()A.B.C.D.12.已知a,b是两条不同的直线,α,β是两个不同的平面,且,,则“”是“”的()B.必要不充分条件C.充要条件D.既不充分也不必要条件A.充分不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.中,角的对边分别为,且成等差数列,若,,则的面积为__________.14.如图,、分别是双曲线的左、右焦点,过的直线与双曲线的两条渐近线分别交于、两点,若,,则双曲线的离心率是______.15.已知,为虚数单位,且,则=_____.16.在矩形ABCD中,,,点E,F分别为BC,CD边上动点,且满足,则的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,该项质量指标值落在区间内的产品视为合格品,否则视为不合格品,如图是设备改造前样本的频率分布直方图,下表是设备改造后样本的频数分布表.图:设备改造前样本的频率分布直方图表:设备改造后样本的频率分布表质量指标值频数2184814162内的定为一等品,每件售价(1)求图中实数的值;(2)企业将不合格品全部销毁后,对合格品进行等级细分,质量指标值落在区间240元;质量指标值落在区间或内的定为二等品,每件售价180元;其他的合格品定为三等品,每件售价120元,根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.若有一名顾客随机购买两件产品支付的费用为(单位:元),求的分布列和数学期望.18.(12分)已知等差数列中,,数列的前项和.,(1)求;(2)若,求的前项和.19.(12分)如图,四棱锥的底面为直角梯形,,,底面,且,为的中点.(1)证明:;(2)设点是线段上的动点,当直线与直线所成的角最小时,求三棱锥的体积.20.(12分)已知函数.(1)求不等式的解集;(2)若正数、满足,求证:.21.(12分)已知函数.(1)若,,求函数的单调区间;(2)时,若对一切恒成立,求a的取值范围.22...