2023-2024学年福建省邵武七中高三第二次联考数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件2.已知函数的导函数为,记,,…,N.若,则()A.B.C.D.3.已知是定义是上的奇函数,满足,当时,,则函数在区间上的零点个数是()A.3B.5C.7D.94.阅读下侧程序框图,为使输出的数据为,则①处应填的数字为A.B.C.D.5.已知,是两条不重合的直线,是一个平面,则下列命题中正确的是()A.若,,则B.若,,则C.若,,则D.若,,则6.某校8位学生的本次月考成绩恰好都比上一次的月考成绩高出50分,则以该8位学生这两次的月考成绩各自组成样本,则这两个样本不变的数字特征是()A.方差B.中位数C.众数D.平均数7.已知圆:,圆:,点、分别是圆、圆上的动点,为轴上的动点,则的最大值是()A.B.9C.7D.8.如图是一个几何体的三视图,则该几何体的体积为()A.B.C.D.9.已知实数、满足约束条件,则的最大值为()A.B.C.D.时该命题成立,则10.某个命题与自然数有关,且已证得“假设时该命题也成立”.现已知当时,该命题不成立,那么()A.当时,该命题不成立B.当时,该命题成立C.当时,该命题不成立D.当时,该命题成立11.已知集合,集合,则().A.B.C.D.12.已知数列满足,且成等比数列.若的前n项和为,则的最小值为()A.B.C.D.,二、填空题:本题共4小题,每小题5分,共20分。13.已知各项均为正数的等比数列的前项积为,(且),则__________.14.已知a,b均为正数,且,的最小值为________.15.某几何体的三视图如图所示(单位:),则该几何体的体积是_____;最长棱的长度是_____.16.我国古代数学名著《九章算术》对立体几何有深入的研究,从其中一些数学用语可见,譬如“憋臑”意指四个面都是直角三角形的三棱锥.某“憋臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知几何体高为,则该几何体外接球的表面积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知首项为2的数列满足.(1)证明:数列是等差数列.(2)令,求数列的前项和.18.(12分)在直角坐标系中,直线l过点,且倾斜角为,以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.求直线l的参数方程和曲线C的直角坐标方程,并判断曲线C是什么曲线;设直线l与曲线C相交与M,N两点,当,求的值.19.(12分)为了实现中华民族伟大复兴之梦,把我国建设成为富强民主文明和谐美丽的社会主义现代化强国,党和国家为劳动者开拓了宽广的创造性劳动的舞台.借此“东风”,某大型现代化农场在种植某种大棚有机无公害的蔬菜时,为创造更大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间和降低夜间温度两种不同方案.为比较两种方案下产量的区别,该农场选取了40间大棚(每间一亩),分成两组,每组20间进行试点.第一组采用延长光照时间的方案,第二组采用降低夜间温度的方案.同时种植该蔬菜一季,得到各间大棚产量数据信息如下图:(1)如果你是该农场的负责人,在只考虑亩产量的情况下,请根据图中的数据信息,对于下一季大棚蔬菜的种植,说出你的决策方案并说明理由;(2)已知种植该蔬菜每年固定的成本为6千元/亩.若采用延长光照时间的方案,光照设备每年的成本为0.22千元/亩;若采用夜间降温的方案,降温设备的每年成本为0.2千元/亩.已知该农场共有大棚100间(每间1亩),农场种植的该蔬菜每年产出两次,且该蔬菜市场的收购均价为1千元/千斤.根据题中所给数据,用样本估计总体,请计算在两种不同的方...