2023-2024学年贵州省贵阳市示范名校高三第一次调研测试数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数,则的虚部为()A.-1B.C.1D.2.复数().A.B.C.D.3.甲乙两人有三个不同的学习小组,,可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为()A.B.C.D.4.若函数有且只有4个不同的零点,则实数的取值范围是()A.B.C.D.5.若函数在时取得极值,则()A.B.C.D.6.已知实数,满足约束条件,则目标函数的最小值为A.B.C.D.7.已知F为抛物线y2=4x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则FA﹣FB的值等于()A.B.8C.D.48.若,则的虚部是()A.B.C.D.9.等比数列的各项均为正数,且,则()A.12B.10C.8D.10.已知某口袋中有3个白球和个黑球(),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是.若,则=()A.B.1C.D.211.在正方体中,,分别为,的中点,则异面直线,所成角的余弦值为()A.B.C.D.12.若样本的平均数是10,方差为2,则对于样本,下列结论正确的是()A.平均数为20,方差为4B.平均数为11,方差为4C.平均数为21,方差为8D.平均数为20,方差为8二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,且,则______.14.函数在区间上的值域为______.15.设,若关于的方程有实数解,则实数的取值范围_____.16.已知以x±2y=0为渐近线的双曲线经过点,则该双曲线的标准方程为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知动圆恒过点,且与直线相切.(1)求圆心的轨迹的方程;的平行线交轨迹于,两点,交轨迹在处的切线于点,问:(2)设是轨迹上横坐标为2的点,是否存在实常数使,若存在,求出的值;若不存在,说明理由.18.(12分)设数列的前列项和为,已知.(1)求数列的通项公式;(2)求证:.19.(12分)设等比数列的前项和为,若(Ⅰ)求数列的通项公式;(Ⅱ)在和之间插入个实数,使得这个数依次组成公差为的等差数列,设数列的前项和为,求证:.20.(12分)已知关于的不等式解集为().(1)求正数的值;(2)设,且,求证:.21.(12分)如图,在三棱锥中,,,,平面平面,、分别为、中点.(1)求证:;(2)求二面角的大小.22.(10分)如图在棱锥中,为矩形,面,(1)在上是否存在一点,使面,若存在确定点位置,若不存在,请说明理由;(2)当为中点时,求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分子分母同乘分母的共轭复数即可.【详解】,故的虚部为.故选:A.【点睛】本题考查复数的除法运算,考查学生运算能力,是一道容易题.2、A【解析】试题分析:,故选A.【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.3、A【解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.4、B【解析】由是偶函数,则只需在上有且只有两个零点即可.【详解】解:显然是偶函数所以只需时,有且只有2个零点即可令,则令,递减,且递增,且时,有且只有2个零点,只需故选:B【点睛】考查函数性质的应用以及根据零点个数确定参数的取值范围,基础题.5、D【解析】对函数求导,根据函数在时取得极值,得到,即可求出结果.【详解】因为,所以,又函数在时取得极值,所以,解得.故选D【点睛】本题主要考查导数的应用,根...