2023-2024学年辽宁省凌源三中高考仿真卷数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设正项等比数列的前n项和为,若,,则公比()A.B.4C.D.22.二项式的展开式中,常数项为()A.B.80C.D.1603.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则()A.170B.10C.172D.124.设为的两个零点,且的最小值为1,则()A.B.C.D.5.已知,是两条不重合的直线,,是两个不重合的平面,则下列命题中错误的是()A.若,,则或B.若,,,则C.若,,,则D.若,,则6.在中,角、、所对的边分别为、、,若,则()A.B.C.D.7.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A.12种B.18种C.24种D.64种8.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,,,,则按照以上规律,若具有“穿墙术”,则()A.48B.63C.99D.1209.用数学归纳法证明,则当时,左端应在的基础上加上()A.B.C.D.10.设函数,若函数有三个零点,则A.12()C.6D.3B.1111.已知定义在上的奇函数,其导函数为,当时,恒有.则不等式的解集为().A.B.C.或D.或12.若表示不超过的最大整数(如,,),已知,,,则()A.2B.5C.7D.8,二、填空题:本题共4小题,每小题5分,共20分。13.的角所对的边分别为,且,若,则的值为__________.,则_____.14.已知数列为等比数列,15.已知正实数满足,则的最小值为.16.若将函数的图象沿轴向右平移个单位后所得的图象与的图象关于轴对称,则的最小值为________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面平面ABCD,,,底面ABCD是边长为2的菱形,点E,F分别为棱DC,BC的中点,点G是棱SC靠近点C的四等分点.求证:(1)直线平面EFG;(2)直线平面SDB.18.(12分)在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为(为参数),求直线与曲线的交点的直角坐标.19.(12分)某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过(分钟),则称这个工人为优秀员工.(1)求这个样本数据的中位数和众数;(2)以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望.中,平面平面,是边长为2的等边三角形,20.(12分)如图,在四棱柱,,,点为的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.(Ⅲ)在线段上是否存在一点,使直线与平面所成的角正弦值为,若存在求出的长,若不存在说明理由.的前项和为,且,数列满足,点在21.(12分)设数列上,(1)求数列,的通项公式;(2)设,求数列的前项和.22.(10分)已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)当时,求函数在上最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由得,又,两式相除即可解出.【详解】解:由得,又,∴,∴,或,又正项等比数列得,∴,故选:D.【点睛】本题主要考查等比数列的性质的应用,属于基础题.2、A【解析】求出二项式的展开式的通式,再令...