2023-2024学年重庆市主城四区高三冲刺模拟数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数的图像向左平移个单位得到函数的图像,则的最小值为()A.B.C.D.2.已知双曲线的离心率为,抛物线的焦点坐标为,若,则双曲线的渐近线方程为()A.B.C.D.3.已知,则()A.B.C.D.4.已知实数、满足不等式组,则的最大值为()A.B.C.D.5.偶函数关于点对称,当时,,求()C.D.A.B.为等腰梯形,,6.己知四棱锥中,四边形,是等边三角形,且;若点在四棱锥的外接球面上运动,记点到平面的距离为,若平面平面,则的最大值为()A.B.C.D.7.已知,满足,且的最大值是最小值的4倍,则的值是()A.4B.C.D.8.设全集,集合,,则集合()A.B.C.D.9.对于函数,定义满足的实数为的不动点,设,其中且,若有且仅有一个不动点,则的取值范围是()A.或B.C.或D.10.已知等比数列的前项和为,且满足,则的值是()D.A.B.C.”11.下列说法正确的是()A.“若,则”的否命题是“若,则B.“若,则”的逆命题为真命题C.,使成立D.“若,则”是真命题12.函数的部分图像大致为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.经过椭圆中心的直线与椭圆相交于、两点(点在第一象限),过点作轴的垂线,垂足为点.设直线与椭圆的另一个交点为.则的值是________________.,若圆14.在平面直角坐标系中,已知点,上有且仅有一对点,使得的面积是的面积的2倍,则的值为_______.15.已知数列的前项和为,且满足,则______16.已知的终边过点,若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,底面是平行四边形,为其中心,为锐角三角形,且平面底面,为的中点,.(1)求证:平面;(2)求证:.18.(12分)设函数,.(1)解不等式;(2)若对任意的实数恒成立,求的取值范围.19.(12分)在等比数列中,已知,.设数列的前n项和为,且,(,).(1)求数列的通项公式;(2)证明:数列是等差数列;(3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.20.(12分)如图,三棱柱ABC-A1B1C1中,侧面BCC1B1是菱形,AC=BC=2,∠CBB1=,点A在平面BCC1B1上的投影为棱BB1的中点E.(1)求证:四边形ACC1A1为矩形;(2)求二面角E-B1C-A1的平面角的余弦值.21.(12分)如图,在四棱锥中,底面为矩形,侧面底面,为棱的中点,为棱上任意一点,且不与点、点重合..(1)求证:平面平面;(2)是否存在点使得平面与平面所成的角的余弦值为?若存在,求出点的位置;若不存在,请说明理由.22.(10分)设点,分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为1.(1)求椭圆的方程;(2)如图,动直线与椭圆有且仅有一个公共点,点,是直线上的两点,且,,求四边形面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可.【详解】将函数的图象向左平移个单位,得到,此时与函数的图象重合,则,即,,当时,取得最小值为,故选:.【点睛】本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键.2、A【解析】求出抛物线的焦点坐标,得到双曲线的离心率,然后求解a,b关系,即可得到双曲线的渐近线方程.【详解】抛物线y2=2px(p>0)的焦点坐标为(1,0),则p=2,又e=p,所以e2...