2023-2024学年陕西省周至县第五中学高三下学期第六次检测数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.把满足条件(1),,(2),,使得的函数称为“D函数”,下列函数是“D函数”的个数为()①②③④⑤A.1个B.2个C.3个D.4个2.已知,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.已知圆关于双曲线的一条渐近线对称,则双曲线的离心率为()A.B.C.D.4.要得到函数的导函数的图像,只需将的图像()A.向右平移个单位长度,再把各点的纵坐标伸长到原来的3倍B.向右平移个单位长度,再把各点的纵坐标缩短到原来的倍C.向左平移个单位长度,再把各点的纵坐标缩短到原来的倍D.向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍5.为虚数单位,则的虚部为()A.B.C.D.6.已知向量,,且与的夹角为,则()A.B.1C.或1D.或97.若不等式对于一切恒成立,则的最小值是()A.0B.C.D.8.设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为()A.B.C.D.9.已知定义在上的奇函数,其导函数为,当时,恒有.则不等式的解集为().A.B.C.或D.或10.已知,,是平面内三个单位向量,若,则的最小值()D.5A.B.C.11.已知函数,若所有点,所构成的平面区域面积为,,则()A.B.C.1D.12.已知展开式中第三项的二项式系数与第四项的二项式系数相等,若,则的值为()A.1B.-1C.8lD.-81二、填空题:本题共4小题,每小题5分,共20分。13.已知,在方向上的投影为,则与的夹角为_________.14.已知二项式的展开式中的常数项为,则__________.15.已知点是抛物线的焦点,,是该抛物线上的两点,若,则线段中点的纵坐标为__________.16.设函数,则满足的的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,.(1)解不等式;(2)若对任意的实数恒成立,求的取值范围.18.(12分)已知,,设函数,.(1)若,求不等式的解集;(2)若函数的最小值为1,证明:.19.(12分)己知点,分别是椭圆的上顶点和左焦点,若与圆相切于点,且点是线段靠近点的三等分点.求椭圆的标准方程;直线与椭圆只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于,两点,求面积的取值范围.20.(12分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,,,求证:.21.(12分)已知函数是减函数.(1)试确定a的值;(2)已知数列,求证:.22.(10分)已知A是抛物线E:y2=2px(p>0)上的一点,以点A和点B(2,0)为直径两端点的圆C交直线x=1于M,N两点.(1)若MN=2,求抛物线E的方程;(2)若0<p<1,抛物线E与圆(x﹣5)2+y2=9在x轴上方的交点为P,Q,点G为PQ的中点,O为坐标原点,求直线OG斜率的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】满足(1)(2)的函数是偶函数且值域关于原点对称,分别对所给函数进行验证.【详解】满足(1)(2)的函数是偶函数且值域关于原点对称,①不满足(2);②不满足(1);③不满足(2);④⑤均满足(1)(2).故选:B.【点睛】本题考查新定义函数的问题,涉及到函数的性质,考查学生逻辑推理与分析能力,是一道容易题.2、B【解析】根据诱导公式化简再分析即可.【详解】,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,因为所以p是q的必要而不充分条件.故选:B【点睛】本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.3、C【解析】将圆,化为标准方程为,求得圆心为.根据圆关于双曲线...