2023-2024学年陕西省西北工业大学附中高考数学三模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若x,y满足约束条件的取值范围是A.[0,6]B.[0,4]C.[6,D.[4,2.若函数的对称点在)的图象上两点,关于直线的图象上,则的取值范围是(A.B.C.D.3.在正方体中,点、分别为、的中点,过点作平面使平面,平面若直线平面,则的值为()A.B.C.D.4.已知函数,,若对,且,使得,则实数的取值范围是()A.B.C.D.5.若函数有两个极值点,则实数的取值范围是()A.B.C.D.6.某几何体的三视图如图所示,则该几何体的体积为()A.B.3C.D.47.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为()A.58厘米B.63厘米C.69厘米D.76厘米8.设,是空间两条不同的直线,,是空间两个不同的平面,给出下列四个命题:①若,,,则;②若,,,则;③若,,,则;④若,,,,则.其中正确的是()A.①②B.②③C.②④D.③④9.关于函数,有下列三个结论:①是的一个周期;②在上单调递增;③的值域为.则上述结论中,正确的个数为()A.B.C.D.10.已知函数,其中,记函数满足条件:为事件,则事件发生的概率为B.A.C.D.11.已知随机变量X的分布列如下表:X01Pabc其中a,b,.若X的方差对所有都成立,则()D.A.B.C.,且12.如图,在中,,则()A.1B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则_________.14.的展开式中的系数为__________(用具体数据作答).15.设(其中为自然对数的底数),,若函数恰有4个不同的零点,则实数的取值范围为________.16.已知曲线,点,在曲线上,且以为直径的圆的方程是.,平则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,,是的中点,点在上,平面面平面,为锐角三角形,求证:(1)是的中点;(2)平面平面.18.(12分)如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.(1)求的值:(2)若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.19.(12分)已知椭圆的左、右焦点分别为直线垂直于轴,垂足为,与抛物线交于不同的两点,且过的直线与椭圆交于两点,设且.(1)求点的坐标;(2)求的取值范围.20.(12分)已知非零实数满足.(1)求证:;(2)是否存在实数,使得恒成立?若存在,求出实数的取值范围;若不存在,请说明理由21.(12分)如图,三棱台的底面是正三角形,平面平面,.(1)求证:;(2)若,求直线与平面所成角的正弦值..22.(10分)已知函数(1)求的极值;(2)若,且,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选D.2、D与有两个公共点,可转化为方程有两解,构造函数【解析】由题可知,可转...