2023-2024学年青海省西宁第二十一中学高三适应性调研考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边.已知以直角边为直径的半圆的面积之比为,记,则()A.B.C.D.2.已知向量,,若,则()A.B.C.-8D.83.当时,函数的图象大致是()A.B.C.D.4.点为的三条中线的交点,且,,则的值为()A.B.C.D.5.已知为定义在上的偶函数,当时,,则()A.B.C.D.6.如图是二次函数的部分图象,则函数的零点所在的区间是()A.B.C.D.7.已知三棱柱的所有棱长均相等,侧棱平面,过作平面与平行,设平面与平面的交线为,记直线与直线所成锐角分别为,则这三个角的大小关系为()A.B.C.D.8.已知抛物线:,点为上一点,过点作轴于点,又知点,则的最小值为()A.B.C.3D.59.在棱长为2的正方体ABCD−A1B1C1D1中,P为A1D1的中点,若三棱锥P−ABC的四个顶点都在球O的球面上,则球O的表面积为()A.12B.C.D.1010.已知向量,,若,则()A.B.C.D.11.在区间上随机取一个数,使直线与圆相交的概率为()A.B.C.D.12.已知双曲线的一条渐近线方程是,则双曲线的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。_______.13.如图,在复平面内,复数,对应的向量分别是,,则14.已知集合A=,B=,若AB中有且只有一个元素,则实数a的值为_______.15.已知三棱锥的四个顶点在球的球面上,,是边长为2的正三角形,,则球的体积为__________.16.如图,在长方体中,,E,F,G分别为的中点,点P在平面ABCD内,若直线平面EFG,则线段长度的最小值是________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知四边形的直角梯形,∥BC,,,,为线段的中点,平面,,为线段上一点(不与端点重合).(1)若,(ⅰ)求证:PC∥平面;(ⅱ)求平面与平面所成的锐二面角的余弦值;(2)否存在实数满足,使得直线与平面所成的角的正弦值为,若存在,确定的值,若不存在,请说明理由.不存在逆矩阵,且非零特低值对应的一个特征向量,求的18.(12分)已知矩阵值.19.(12分)设函数f(x)=x﹣a+x(a>0).(1)若不等式f(x)﹣x≥4x的解集为{xx≤1},求实数a的值;(2)证明:f(x).20.(12分)如图,三棱柱中,底面是等边三角形,侧面是矩形,是的中点,是棱上的点,且.(1)证明:平面;(2)若,求二面角的余弦值.21.(12分)已知动圆恒过点,且与直线相切.(1)求圆心的轨迹的方程;的平行线交轨迹于,两点,交轨迹在处的切线于点,问:(2)设是轨迹上横坐标为2的点,是否存在实常数使,若存在,求出的值;若不存在,说明理由.22.(10分)设函数.(1)当时,求不等式的解集;(2)若不等式恒成立,求实数a的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由半圆面积之比,可求出两个直角边的长度之比,从而可知,结合同角三角函数的基本关系,即可求出,由二倍角公式即可求出.【详解】解:由题意知,以为直径的半圆面积,以为直径的半圆面积,则,即.由,得,所以.故选:D.【点睛】本题考查了同角三角函数的基本关系,考查了二倍角公式.本题的关键是由面积比求出角的正切值.2、B【解析】先求出向量,的坐标,然后由可求出参数的值.【详解】由向量,,则,,又,则,解得.故选:B【点睛】本题考查向量的坐标运算和模长的运算,属于基础题.3、B【解析】由,解得,即或,函数有两个零点,,不正确,设,...