2023-2024学年黑龙江省哈尔滨第三中学高考冲刺押题(最后一卷)数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若θ是第二象限角且sinθ=,则=A.B.C.D.2.设过点原点,若的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标A.,且,则点的轨迹方程是()B.C.D.3.已知函数的定义域为,则函数的定义域为()A.B.C.D.4.有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是()A.8B.7C.6D.45.已知双曲线的左焦点为,直线经过点且与双曲线的一条渐近线垂直,直线与双曲线的左支交于不同的两点,,若,则该双曲线的离心率为().A.B.C.D.6.已知函数,,若对任意的,存在实数满足,使得,则的最大值是()A.3B.2C.4D.57.已知抛物线上的点到其焦点的距离比点到轴的距离大,则抛物线的标准方程为()A.B.C.D.8.已知函数,,若成立,则的最小值是()A.B.C.D.9.设复数满足,则在复平面内的对应点位于()A.第一象限10.要得到函数B.第二象限C.第三象限D.第四象限的图象,只需将函数的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位11.设直线的方程为,圆的方程为,若直线被圆所截得的弦长为,C.D.则实数的取值为B.或11A.或1112.已知集合,,若,则().设三棱锥A.4B.-4C.8D.-8上一点,且二、填空题:本题共4小题,每小题5分,共20分。13.如图,在正四棱柱中,P是侧棱的体积为,正四棱柱的体积为V,则的值为________.14.抛物线上到其焦点的距离为的点的个数为________.15.在平面直角坐标系中,点在单位圆上,设,且.若,则的值为________________.16.在中,内角A,B,C的对边分别是a,b,c,且,,,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥E﹣ABCD的侧棱DE与四棱锥F﹣ABCD的侧棱BF都与底面ABCD垂直,,//,.(1)证明://平面BCE.(2)设平面ABF与平面CDF所成的二面角为θ,求.18.(12分)以直角坐标系的原点为极坐标系的极点,轴的正半轴为极轴.已知曲线的极坐标方程为,是上一动点,,点的轨迹为.(1)求曲线的极坐标方程,并化为直角坐标方程;(2)若点,直线的参数方程(为参数),直线与曲线的交点为,当取最小值时,求直线的普通方程.19.(12分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).(1)请用角表示清洁棒的长;(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.20.(12分)在平面四边形(图①)中,与均为直角三角形且有公共斜边,设,∠,∠,将沿折起,构成如图②所示的三棱锥,且使=.(1)求证:平面⊥平面;(2)求二面角的余弦值.21.(12分)已知为等差数列,为等比数列,的前n项和为,满足,,,.(1)求数列和的通项公式;(2)令,数列的前n项和,求.22.(10分)设数列的前列项和为,已知.(1)求数列的通项公式;(2)求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项...