电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

2024届上海丰华中学高三第五次模拟考试数学试卷含解析.doc

2024届上海丰华中学高三第五次模拟考试数学试卷含解析.doc_第1页
1/24
2024届上海丰华中学高三第五次模拟考试数学试卷含解析.doc_第2页
2/24
2024届上海丰华中学高三第五次模拟考试数学试卷含解析.doc_第3页
3/24
2024届上海丰华中学高三第五次模拟考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在区间上随机取一个数,使直线与圆相交的概率为()A.B.C.D.2.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为()A.B.C.D.3.若2m>2n>1,则()A.B.πm﹣n>1C.ln(m﹣n)>0D.4.若平面向量,满足,则的最大值为()D.A.B.C.5.已知函数,则()A.B.C.D.与函数6.已知与分别为函数的图象上一点,则线段的最小值为()A.B.C.D.67.方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足()A.B.C.D.8.已知集合,则A.,集合().C.B.D.9.已知实数、满足不等式组,则的最大值为()A.B.C.D.10.若函数恰有3个零点,则实数的取值范围是()A.B.C.D.11.是正四面体的面内一动点,为棱中点,记与平面成角为定值,若点的轨迹为一段抛物线,则()A.B.C.D.12.若复数满足,则()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知的展开式中含有的项的系数是,则展开式中各项系数和为______.14.已知正方形边长为,空间中的动点满足,,则三棱锥体积的最大值是______.15.已知不等式组所表示的平面区域为,则区域的外接圆的面积为______.16.已知的展开式中项的系数与项的系数分别为135与,则展开式所有项系数之和为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,直线为曲线的切线(为自然对数的底数).(1)求实数的值;(2)用表示中的最小值,设函数,若函数为增函数,求实数的取值范围.18.(12分)如图,在四棱锥中,平面平面,.(Ⅰ)求证:平面;(Ⅱ)若锐二面角的余弦值为,求直线与平面所成的角.19.(12分)已知是各项都为正数的数列,其前项和为,且为与的等差中项.(1)求证:数列为等差数列;(2)设,求的前100项和.20.(12分)已知()过点,且当时,函数取得最大值1.的图象向右平移个单位得到函数,求函数的表达式;(1)将函数(2)在(1)的条件下,函数,求在上的值域.21.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)设点,若直线与曲线相交于、两点,求的值22.(10分)已知函数.(1)解不等式;(2)使得,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据直线与圆相交,可求出k的取值范围,根据几何概型可求出相交的概率.【详解】因为圆心,半径,直线与圆相交,所以,解得所以相交的概率,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.2、C【解析】分情况讨论,由间接法得到“数”必须排在前两节,“礼”和“乐”必须分开的事件个数,不考虑限制因素,总数有种,进而得到结果.【详解】当“数”位于第一位时,礼和乐相邻有4种情况,礼和乐顺序有2种,其它剩下的有种情况,由间接法得到满足条件的情况有当“数”在第二位时,礼和乐相邻有3种情况,礼和乐顺序有2种,其它剩下的有种,由间接法得到满足条件的情况有共有:种情况,不考虑限制因素,总数有种,故满足条件的事件的概率为:故答案为:C.【点睛】解排列组合问题要遵循两个原则:...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2024届上海丰华中学高三第五次模拟考试数学试卷含解析.doc

您可能关注的文档

确认删除?