2024届上海市第八中学高考数学一模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列为等差数列,且,则的值为()A.B.C.D.2.设是等差数列,且公差不为零,其前项和为.则“,”是“为递增数列”的()B.必要而不充分条件A.充分而不必要条件D.既不充分也不必要条件C.充分必要条件3.已知不同直线、与不同平面、,且,,则下列说法中正确的是()A.若,则B.若,则C.若,则D.若,则4.的展开式中的系数为()A.B.C.D.5.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则().A.B.C.D.6.若直线的倾斜角为,则的值为()A.B.C.D.7.若函数的图象经过点,则函数图象的一条对称轴的方程可以为()A.B.C.D.8.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为()A.B.C.D.9.已知函数(其中有三个不同的零点),则的值为()A.B.C.D.10.设函数是奇函数的导函数,当时,,则使得成立的的取值范围是()B.A.C.D.11.已知实数满足约束条件,则的最小值是A.B.C.1D.412.已知满足,,,则在上的投影为()A.B.C.D.2的的前二、填空题:本题共4小题,每小题5分,共20分。13.在数列中,已知,则数列项和为__________.14.定义在上的奇函数满足,并且当时,则___15.如图,在三棱锥A﹣BCD中,点E在BD上,EA=EB=EC=ED,BDCD,△ACD为正三角形,点M,N分别在AE,CD上运动(不含端点),且AM=CN,则当四面体C﹣EMN的体积取得最大值时,三棱锥A﹣BCD的外接球的表面积为_____.16.在的二项展开式中,所有项的二项式系数之和为256,则_______,项的系数等于________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求函数的单调递增区间(2)记函数的图象为曲线,设点是曲线上不同两点,如果在曲线上存在点,使得①;②曲线在点M处的切线平行于直线AB,则称函数存在“中值和谐切线”,当时,函数是否存在“中值和谐切线”请说明理由18.(12分)已知曲线的参数方程为为参数,曲线的参数方程为为参数).(1)求与的普通方程;(2)若与相交于,两点,且,求的值.19.(12分)已知数列满足.(1)求数列的通项公式;(2)设数列的前项和为,证明:.20.(12分)已知函数.(1)讨论的单调性;,证明:,,使(2)若,设.设变换对应的矩阵为..21.(12分)已知变换将平面上的点,分别变换为点,(1)求矩阵;(2)求矩阵的特征值.22.(10分)已知的内角的对边分别为,且.(Ⅰ)求;(Ⅱ)若的周长是否有最大值?如果有,求出这个最大值,如果没有,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由等差数列的性质和已知可得,即可得到,代入由诱导公式计算可得.【详解】解:由等差数列的性质可得,解得,,故选:B.【点睛】本题考查等差数列的下标和公式的应用,涉及三角函数求值,属于基础题.2、A【解析】根据等差数列的前项和公式以及充分条件和必要条件的定义进行判断即可.【详解】是等差数列,且公差不为零,其前项和为,充分性:,则对任意的恒成立,则,,若,则数列为单调递减数列,则必存在,使得当时,,则,不合乎题意;若,由且数列为单调递增数列,则对任意的,,合乎题意.所以,“,”“为递增数...