2024届上海师大学附中高三一诊考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若与互为共轭复数,则()A.0B.3C.-1D.42.若集合,,则下列结论正确的是()A.B.C.D.3.设函数,若在上有且仅有5个零点,则的取值范围为()A.B.C.D.4.在各项均为正数的等比数列中,若,则()A.B.6C.4D.55.已知抛物线的焦点为,过点的直线与抛物线交于,两点(设点位于第一象限),过点,分别作抛物线的准线的垂线,垂足分别为点,,抛物线的准线交轴于点,若,则直线的斜率为A.1B.C.D.6.已知集合,则()A.B.C.D.7.总体由编号01,,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为7816657208026314070243699728019832049234493582003623486969387481A.08B.07C.02D.018.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是()A.甲B.乙C.丙D.丁9.已知幂函数的图象过点,且,,,则,,的大小关系为()A.B.C.D.10.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则()A.170B.10C.172D.12D.11.为虚数单位,则的虚部为()A.B.C.12.双曲线的一条渐近线方程为,那么它的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.正四面体的各个点在平面同侧,各点到平面的距离分别为1,2,3,4,则正四面体的棱长为__________.14.已知多项式满足,则_________,__________.15.在正方体中,分别为棱的中点,则直线与直线所成角的正切值为_________.16.在四面体中,与都是边长为2的等边三角形,且平面平面,则该四面体外接球的体积为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线交于、两点,求的面积.18.(12分)已知为坐标原点,点,,,动点满足,点为线段的中点,抛物线:上点的纵坐标为,.(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.,.19.(12分)已知函数(1)当时,讨论函数的单调性;(2)若,当时,函数,求函数的最小值.20.(12分)已知函数.(1)求不等式的解集;(2)若不等式在上恒成立,求实数的取值范围.21.(12分)如图:在中,,,.(1)求角;的长.(2)设为的中点,求中线22.(10分)已知函数.(Ⅰ)已知是的一个极值点,求曲线在处的切线方程(Ⅱ)讨论关于的方程根的个数.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】计算,由共轭复数的概念解得即可.【详解】,又由共轭复数概念得:,.故选:C【点睛】本题主要考查了复数的运算,共轭复数的概念.2、D【解析】由题意,分析即得解【详解】由题意,故,故选:D【点睛】本题考查了元素和集合,集合和集合之间的关系,考查了学生概念理解,数学运算能力,属于基础题.3、A【解析】由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解.【详解】当时,, 在上有且仅有5个零点,∴,∴.故选:A.【点睛】本题考查正...