2024届上海鲁迅中学高三第二次模拟考试数学试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知全集为,集合,则()A.B.C.D.2.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是()A.2B.3C.4D.13.已知函数,要得到函数的图象,只需将的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度4.一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是()A.B.C.D.满足5.已知函数=1,则等于()A.-B.C.-D.6.已知集合,,则()A.B.C.D.7.已知△ABC中,.点P为BC边上的动点,则的最小值为()A.2B.C.D.8.已知向量,则()A.∥B.⊥C.∥()D.⊥()9.已知数列为等差数列,且,则的值为()A.B.C.D.10.函数的部分图象如图所示,则()A.6B.5C.4D.311.已知复数满足:,则的共轭复数为()A.B.C.D.12.若单位向量,夹角为,,且,则实数()D.2或-1A.-1B.2C.0或-1,则二、填空题:本题共4小题,每小题5分,共20分。13.若=____,=___.14.在平面直角坐标系中,若双曲线(,)的离心率为,则该双曲线的渐近线方程为________.15.设为椭圆在第一象限上的点,则的最小值为________.16.某种圆柱形的如罐的容积为个立方单位,当它的底面半径和高的比值为______.时,可使得所用材料最省.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的焦距为2,且过点.(1)求椭圆的方程;(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,(ⅰ)证明:平分线段(其中为坐标原点);(ⅱ)当取最小值时,求点的坐标.18.(12分)在三角形中,角,,的对边分别为,,,若.(Ⅰ)求角;(Ⅱ)若,,求.19.(12分)设椭圆的左右焦点分别为,离心率,右准线为,是上的两个动点,.(Ⅰ)若,求的值;(Ⅱ)证明:当取最小值时,与共线.20.(12分)已知函数,设的最小值为m.(1)求m的值;(2)是否存在实数a,b,使得,?并说明理由.21.(12分)如图,湖中有一个半径为千米的圆形小岛,岸边点与小岛圆心相距千米,为方便游人到小岛观光,从点向小岛建三段栈道,,,湖面上的点在线段上,且,均与圆相切,切点分别为,,其中栈道,,和小岛在同一个平面上.沿圆的优弧(圆上实线部分)上再修建栈道.记为.用表示栈道的总长度,并确定的取值范围;求当为何值时,栈道总长度最短.22.(10分)已知函数,其中为自然对数的底数,.(1)若曲线在点处的切线与直线平行,求的值;(2)若,问函数有无极值点?若有,请求出极值点的个数;若没有,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】对于集合,求得函数的定义域,再求得补集;对于集合,解得一元二次不等式,再由交集的定义求解即可.【详解】,,.故选:D【点睛】本题考查集合的补集、交集运算,考查具体函数的定义域,考查解一元二次不等式.2、B【解析】将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.【详解】根据实际问题可以转化为等比数列问题,在等比数列中,公比,前项和为,,,求的值.因为,解得,,解得.故选B.【点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.3、A【解析】根据函数图像平移原则,即可容易求得结果.【详解】因为,故要得到,只需将向左平...