2024届云南省曲靖市宣威市第七中学高考冲刺押题(最后一卷)数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知三棱锥中,为的中点,平面,,,则有下列四个结论:①若为的外心,则;②若为等边三角形,则;③当时,与平面所成的角的范围为;④当时,为平面内一动点,若OM∥平面,则在内轨迹的长度为1.其中正确的个数是().A.1B.1C.3D.42.在中,,则()A.B.C.D.3.等比数列的各项均为正数,且,则()A.12B.10C.8D.4.已知向量,,,若,则()A.B.C.D.5.已知(为虚数单位,为的共轭复数),则复数在复平面内对应的点在().A.第一象限B.第二象限C.第三象限D.第四象限,的中点,连接6.已知是边长为1的等边三角形,点,分别是边并延长到点,使得,则的值为()A.B.C.D.7.已知集合,,则()A.B.D.C.或8.已知函数在上有两个零点,则的取值范围是()A.B.C.D.9.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为()A.1B.C.3D.4与圆:10.已知在平面直角坐标系中,圆:交于,D.-2的图象可能是()两点,若,则实数的值为()为奇函数,则A.1B.2C.-111.定义在上的函数满足,且A.B.C.D.12.已知函数是定义域为的偶函数,且满足,当时,,则函数在区间上零点的个数为()A.9B.10C.18D.20的解集是二、填空题:本题共4小题,每小题5分,共20分。13.已知函数若关于的不等式,则的值为_____.14.某市公租房源位于、、三个小区,每位申请人只能申请其中一个小区的房子,申请其中任意一个小区的房子是等可能的,则该市的任意位申请人中,恰好有人申请小区房源的概率是______.(用数字作答)15.为激发学生团结协作,敢于拼搏,不言放弃的精神,某校高三5个班进行班级间的拔河比赛.每两班之间只比赛1场,目前(—)班已赛了4场,(二)班已赛了3场,(三)班已赛了2场,(四)班已赛了1场.则目前(五)班已经参加比赛的场次为__________.16.已知为等比数列,是它的前项和.若,且与的等差中项为,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,解不等式;(2)当时,不等式恒成立,求实数的取值范围.18.(12分)在中,设、、分别为角、、的对边,记的面积为,且.(1)求角的大小;(2)若,,求的值.19.(12分)已知数列满足,且.(1)求证:数列是等差数列,并求出数列的通项公式;(2)求数列的前项和.20.(12分)(Ⅰ)证明:;(Ⅱ)证明:();(Ⅲ)证明:.21.(12分)已知函数.(1)当时,判断在上的单调性并加以证明;(2)若,,求的取值范围.22.(10分)在中,角,,所对的边分别为,,,已知,,角为锐角,的面积为.(1)求角的大小;(2)求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由线面垂直的性质,结合勾股定理可判断①正确;反证法由线面垂直的判断和性质可判断②错误;由线面角的定义和转化为三棱锥的体积,求得C到平面PAB的距离的范围,可判断③正确;由面面平行的性质定理可得线面平行,可得④正确.【详解】画出图形:若为的外心,则,平面,可得,即,①正确;若为等边三角形,,又可得平面,即,由可得,矛盾,②错误;若,设与平面所成角为可得,设到平面的距离为由可得即有,当且仅当取等号.可得的最大值为,即的范围为,③正确;取中点,的中点,连接由中位线定理可得平面平面可得在线段上,而,可得④正确;所以正确的是:①③④故选:C【点睛】此题考查立体几何中与点、线、面位置关系有关的命题的真假判断,处理这类问题,可以用已知的定理或性质来证明,也可以用反证法来说明命题的不成立.属于一般性题目.2、A...