2024届云南省江川第二中学高三下学期第五次调研考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知整数满足,记点的坐标为,则点满足的概率为()A.B.C.D.2.在三棱锥中,,,P在底面ABC内的射影D位于直线AC上,且,.设三棱锥的每个顶点都在球Q的球面上,则球Q的半径为()A.B.C.D.3.下列函数中,在定义域上单调递增,且值域为的是()D.A.B.C.4.执行如图所示的程序框图,则输出的()A.2B.3C.D.5.若函数为自然对数的底数)在区间上不是单调函数,则实数的取值范围是()A.B.C.D.6.已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为()A.B.C.D.7.命题:的否定为A.B.C.D.8.复数在复平面内对应的点为则()A.B.C.D.9.若复数A.为虚数单位在复平面内所对应的点在虚轴上,则实数a为()B.2C.D.10.已知为实数集,,,则()C.A.B.D.11.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则的值为()A.2B.3C.4D.12.已知函数,则()A.B.1C.-1D.0二、填空题:本题共4小题,每小题5分,共20分。,则数列的前项和_____.13.数列的前项和为14.在平面直角坐标系中,双曲线的右准线与渐近线的交点在抛物线上,则实数的值为________.15.一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是___________16.已知正实数满足,则的最小值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)甲、乙两班各派三名同学参加知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是,乙班三名同学答对的概率分别是,,,且这六名同学答题正确与否相互之间没有影响.(1)记“甲、乙两班总得分之和是60分”为事件,求事件发生的概率;(2)用表示甲班总得分,求随机变量的概率分布和数学期望.18.(12分)已知直线l的极坐标方程为,圆C的参数方程为(为参数).(1)请分别把直线l和圆C的方程化为直角坐标方程;(2)求直线l被圆截得的弦长.19.(12分)在四棱锥中,底面是平行四边形,底面.(1)证明:;(2)求二面角的正弦值.20.(12分)已知三棱锥中侧面与底面都是边长为2的等边三角形,且面面,分别为线段的中点.为线段上的点,且.(1)证明:为线段的中点;(2)求二面角的余弦值.21.(12分)已知函数,其中,.(1)当时,求的值;(2)当的最小正周期为时,求在上的值域.22.(10分)为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.(1)求的值;(2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?文科生理科生合计获奖6不获奖合计400(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率.【详解】因为是整数,所以所有...