2024届云南省玉溪市高中名校高三下学期第六次检测数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为()A.B.C.D.2.已知函数的图像的一条对称轴为直线,且,则的最小值为()A.B.0C.D.3.函数在上的图象大致为()A.B.C.D.4.在中,角的对边分别为,,若,,且,则的面积为()A.B.C.D.5.已知函数若恒成立,则实数的取值范围是()A.B.C.D.6.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.D.,,分别是双曲线C的左、右焦点,点P7.已知双曲线的一条渐近线方程为在双曲线C上,且,则()A.9B.5C.2或9D.1或5,直线与分别相交于点,与的准线相交于点8.已知抛物线:D.,若,则()A.3B.C.9.已知满足,则的取值范围为()A.B.C.D.10.某四棱锥的三视图如图所示,该几何体的体积是()A.8B.C.4D.11.在中,“”是“为钝角三角形”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件12.已知集合A={xy=lg(4﹣x2)},B={yy=3x,x>0}时,A∩B=()A.{xx>﹣2}B.{x1<x<2}C.{x1≤x≤2}D.∅二、填空题:本题共4小题,每小题5分,共20分。13.在四棱锥中,底面为正方形,面分别是棱的中点,过的平面交棱于点,则四边形面积为__________.14.已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=________,a5=________.15.已知双曲线的左、右焦点分别为为双曲线上任一点,且的最小值为,则该双,若,曲线的离心率是__________.16.已知函数,令,表示不超过实数的最大整数,记数列的前项和为,则_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)求的直角坐标方程和的直角坐标;(2)设与交于,两点,线段的中点为,求.18.(12分)已知函数.(1)时,求不等式解集;(2)若的解集包含于,求a的取值范围.19.(12分)在中,角所对的边分别为,若,,,且.(1)求角的值;(2)求的最大值.20.(12分)设函数.(1)求的值;(2)若,求函数的单调递减区间.21.(12分)已知函数.(1)解不等式;(2)记函数的最大值为,若,证明:.22.(10分)自湖北武汉爆发新型冠状病毒肺炎疫情以来,在以总书记为核心的党中央的正确领导和指挥下,全国各地纷纷驰援,湖北的疫情形势很快得到了控制,但是国际疫情越来越严重,医用口罩等物资存在很大缺口.某口罩生产厂家复工复产后,抢时生产口罩,以驰援国际社会,已知该企业前10天生产的口罩量如下表所示:第天12345678910产量y(单位:万76.088.096.0104.0111.0117.0124.0130.0135.0140.0个)对上表的数据作初步处理,得到一些统计量的值:mn82.53998.9570.5(1)求表中m,n的值,并根据最小二乘法求出y关于x的线性回归方程(回归方程系数精确到0.1);(2)某同学认为更适宜作为y关于x的回归方程模型,并以此模型求得回归方程为.经调查,该企业第11天的产量为145.3万个,与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?并说明理由.附:,;参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增...