2024届兴义市第八中学高三最后一卷数学试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数,满足,则()A.1B.C.D.52.已知命题p:若,,则;命题q:,使得”,则以下命题为真命题的是()A.B.C.D.3.是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是()A.B.C.D.4.不等式组表示的平面区域为,则()A.,B.,C.,D.,5.函数的大致图象为()A.B.C.D.6.已知集合A={yy=x﹣1,x∈R},B={xx≥2},则下列结论正确的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B7.函数在内有且只有一个零点,则a的值为()A.3B.-3C.2D.-28.已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为()A.B.C.D.9.若单位向量,夹角为,,且,则实数()C.0或-1D.2或-1A.-1B.210.已知,函数,若函数恰有三个零点,则()A.B.C.D.11.百年双中的校训是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味运动会中有这样的一个小游戏.袋子中有大小、形状完全相同的四个小球,分别写有“仁”、“智”、“雅”、“和”四个字,有放回地从中任意摸出一个小球,直到“仁”、“智”两个字都摸到就停止摸球.小明同学用随机模拟的方法恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“仁”、“智”、“雅”、“和”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数:141432341342234142243331112322342241244431233214344142134412由此可以估计,恰好第三次就停止摸球的概率为()A.B.C.D.12.设是等差数列的前n项和,且,则()A.B.C.1D.2二、填空题:本题共4小题,每小题5分,共20分。13.设满足约束条件且的最小值为7,则=_________.14.己知双曲线的左、右焦点分别为,直线是双曲线过第一、三象限的渐近线,记直线的倾斜角为,直线,,垂足为,若在双曲线上,则双曲线的离心率为_______名学生参加了数学测验(满分分),已知这名学生的数学成绩均不低于分,15.某校高三年级共有将这名学生的数学成绩分组如下:,,,,,,得到的频率分布直方图如图所示,则下列说法中正确的是________(填序号).①;②这名学生中数学成绩在分以下的人数为;③这名学生数学成绩的中位数约为;④这名学生数学成绩的平均数为.16.如图,在中,已知,为边的中点.若,垂足为,则的值为__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)有最大值,且最大值大于.(1)求的取值范围;(2)当时,有两个零点,证明:.(参考数据:)18.(12分)如图,内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,平面ABC,,.(1)求证:平面ACD;(2)设,表示三棱锥B-ACE的体积,求函数的解析式及最大值.19.(12分)在平面直角坐标系中,曲线C的参数方程为(为参数).以原点为极点,x轴的非负半轴为极轴,建立极坐标系.(1)求曲线C的极坐标方程;(2)直线(t为参数)与曲线C交于A,B两点,求最大时,直线l的直角坐标方程.20.(12分)已知函数,设为的导数,.(1)求,;(2)猜想的表达式,并证明你的结论.21.(12分)已知函数.若在定义域内存在,使得成立,则称为函数的局部对称点.且a≠0,证明:函数有局部对称点;(1)若a,(2)若函数在定义域内有局部对称点,求实数c的取值范围;(3)若函数在R上有局部对称点,求实数m的取值范围.22.(10分)在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选...