2024届北京市东城区第十一中学高三压轴卷数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的中心在原点且一个焦点为,直线与其相交于,两点,若中点的横坐标为,则此双曲线的方程是A.B.C.D.2.已知三棱锥且平面,其外接球体积为()A.B.C.D.3.设a,b,c为正数,则“”是“”的()A.充分不必要条件C.充要条件B.必要不充分条件4.已知为虚数单位,实数D.既不充分也不修要条件满足,则()A.1B.C.D.5.将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为()A.B.C.D.6.已知与函数和都相切,则不等式组所确定的平面区域在交于两点,直线内的面积为()A.B.C.D.7.设过抛物线上任意一点(异于原点)的直线与抛物线与抛物线的另一个交点为,则()A.B.C.D.8.已知集合,,A.,则()B.C.D.9.函数(),当时,的值域为,则的范围为()A.B.C.D.10.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金()A.多1斤B.少1斤C.多斤D.少斤11.如图1,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子,原高一丈(1丈=10尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为()尺.A.B.C.D.12.函数的大致图像为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,则______,______.14.在△ABC中,a=3,,B=2A,则cosA=_____.15.已知,,其中,为正的常数,且,则的值为_______.16.已知等边三角形的边长为1.,点、分别为线段、上的动点,则取值的集合为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,函数有最小值7.(1)求的值;(2)设,,求证:.18.(12分)已知,,不等式恒成立.(1)求证:(2)求证:.,是上的一点,19.(12分)如图,平面四边形中,是的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.20.(12分)如图所示,三棱柱中,平面,点,分别在线段,上,且,,是线段的中点.(Ⅰ)求证:平面;(Ⅱ)若,,,求直线与平面所成角的正弦值.21.(12分)如图,直角三角形所在的平面与半圆弧所在平面相交于,,,分别为,的中点,是上异于,的点,.(1)证明:平面平面;(2)若点为半圆弧上的一个三等分点(靠近点)求二面角的余弦值.22.(10分)记无穷数列的前项中最大值为,最小值为,令,则称是“极差数列”.,求的前项和;(1)若(2)证明:的“极差数列”仍是;(3)求证:若数列是等差数列,则数列也是等差数列.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据点差法得,再根据焦点坐标得,解方程组得,,即得结果.【详解】设双曲线的方程为,由题意可得,设,,则的中点为,由且,得,,即,联立,解得,,故所求双曲线的方程为.故选D.【点睛】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.2、A【解析】由,平面,可将三棱锥还原成长方体,则三棱锥的外接球即为长方体的外接球,进而求解.,所以,【详解】由题,因为设,则由,可得,解得,可将三棱锥还原成如图所示的长方体,则三棱锥的外接球即为长方体的外接球,设外接球的半径为,则,所以,所以外接球的体积.故选:A【点睛】本题考查...