2024届北京市朝阳区力迈国际学校高三(最后冲刺)数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,,不共线时,的面积的最大值是()A.B.C.D.2.若向量,,则与共线的向量可以是()A.B.C.D.3.已知随机变量X的分布列如下表:X01Pabc其中a,b,.若X的方差对所有都成立,则()A.B.C.D.上任意一点,是线段上的点,且4.设为坐标原点,是以为焦点的抛物线,则直线的斜率的最大值为()A.1B.C.D.5.已知集合,则全集则下列结论正确的是()A.B.C.D.6.若某几何体的三视图如图所示,则该几何体的表面积为()A.240B.264C.274D.2827.已知数列满足:,则()A.16B.25C.28D.338.已知抛物线)的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为(A.B.C.D.9.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A.240,18B.200,20C.240,20D.200,1810.若变量,满足,则的最大值为()A.3B.2C.D.1011.在棱长为a的正方体中,E、F、M分别是AB、AD、的中点,又P、Q分别在线段、上,且,设平面平面,则下列结论中不成立的是()A.平面B.D.当m变化时,直线l的位置不变C.当时,平面12.复数(为虚数单位),则等于()A.3B.C.2D.二、填空题:本题共4小题,每小题5分,共20分。13.在长方体中,,则异面直线与所成角的余弦值为()A.B.C.D.14.展开式中的系数为________.15.有以下四个命题:①在中,的充要条件是;②函数在区间上存在零点的充要条件是;③对于函数,若,则必不是奇函数;④函数与的图象关于直线对称.其中正确命题的序号为______.16.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金;随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金.若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,且过点.(1)求椭圆C的标准方程;轴于Q,线段PQ的中点为M.直线AM与直线(2)点P是椭圆上异于短轴端点A,B的任意一点,过点P作交于点N,D为线段BN的中点,设O为坐标原点,试判断以OD为直径的圆与点M的位置关系.18.(12分)已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等式成立,求实数的取值范围.19.(12分)已知椭圆的焦距为2,且过点.(1)求椭圆的方程;(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,(ⅰ)证明:平分线段(其中为坐标原点);(ⅱ)当取最小值时,求点的坐标.20.(12分)等差数列的前项和为,已知,.(1)求数列的通项公式;(2)设数列{}的前项和为,求使成立的的最小值.21.(12分)设的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,求的取值范围.22.(10分)设函数.(1)当时,求不等式的解集;(2)若恒成立,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,...