2024届北京西城8中高三下学期联考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,满足,在上投影为,则的最小值为()A.B.C.D.2.设,分别是椭圆的左、右焦点,过的直线交椭圆于,两点,且,,则椭圆的离心率为()A.B.C.D.3.若为虚数单位,则复数,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限4.已知不等式组表示的平面区域的面积为9,若点,则的最大值为()A.3B.6C.9D.125.在中,角的对边分别为,若.则角的大小为()A.B.C.D.6.连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为()A.B.C.D.7.已知向量,,则向量与的夹角为()A.B.C.D.8.若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于()A.B.C.2或D.2或9.设函数,则使得成立的的取值范围是().A.B.C.D.10.一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是()A.B.C.D.11.已知f(x)=是定义在R上的奇函数,则不等式f(x-3)<f(9-x2)的解集为()A.(-2,6)B.(-6,2)C.(-4,3)D.(-3,4)12.已知双曲线的左、右焦点分别为,,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中,常数项为________.(用数字作答)14.已知向量满足,,则______________.15.设是公差不为0的等差数列的前n项和,且,则______.16.已知各项均为正数的等比数列的前项积为,,(且),则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列的公差为,等差数列的公差为.设分别是数列的前项和,且,,(1)求数列的通项公式;(2)设,求数列的前项和.18.(12分)已知函数.(1)当时,解不等式;(2)当时,不等式恒成立,求实数的取值范围.19.(12分)已知曲线的参数方程为为参数,曲线的参数方程为为参数).(1)求与的普通方程;(2)若与相交于,两点,且,求的值.20.(12分)如图,四边形为菱形,为与的交点,平面.(1)证明:平面平面;(2)若,,三棱锥的体积为,求菱形的边长.21.(12分)已知数列是各项均为正数的等比数列,数列为等差数列,且,,.(1)求数列与的通项公式;(2)求数列的前项和;(3)设为数列的前项和,若对于任意,有,求实数的值.22.(10分)已知函数.(1)讨论的单调性并指出相应单调区间;(2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据在上投影为,以及,可得;再对所求模长进行平方运算,可将问题转化为模长和夹角运算,代入即可求得.【详解】在上投影为,即又本题正确选项:【点睛】本题考查向量模长的运算,对于含加减法运算的向量模长的求解,通常先求解模长的平方,再开平方求得结果;解题关键是需要通过夹角取值范围的分析,得到的最小值.2、C【解析】根据表示出线段长度,由勾股定理,解出每条线段的长度,再由勾股定理构造出关系,求出离心率.【详解】设,则由椭圆的定义,可以得到,在中,有,解得在中,有整理得,故选C项.关系,得到离心率.属于【点睛】本题考查几何法求椭圆离心率,是求椭圆离心率的一个常用方法,通过几何关系,构造出中档题.3、B【解析】首先根据特殊角的三角...