2024届北京西城8中高三下第一次测试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则()A.5B.C.13D.,,则输出的()2.执行如图所示的程序框图,若输入A.4B.5C.6D.73.已知的展开式中的常数项为8,则实数()A.2B.-2C.-3D.34.幻方最早起源于我国,由正整数1,2,3,……,这个数填入方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫阶幻方.定义为阶幻方对角线上所有数的和,如,则()A.55B.500C.505D.50505.已知集合,C.4A.8,则集合的真子集的个数是()B.7D.36.定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是()A.B.C.D.以上情况均有可能7.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为()A.4πB.8πC.D.8.在,则A.中,为边上的中点,且()D.B.C.9.若函数恰有3个零点,则实数的取值范围是()A.B.C.D.10.已知函数,,当时,不等式恒成立,则实数a的取值范围为()B.A.C.D.11.已知,是两条不重合的直线,,是两个不重合的平面,则下列命题中错误的是()A.若,,则或B.若,,,则C.若,,,则D.若,,则12.已知函数,当时,的取值范围为,则实数m的取值范围是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。,其中α,β∈R,且α+β=1,则点13.平面直角坐标系中,O为坐标原点,己知A(3,1),B(-1,3),若点C满足C的轨迹方程为14.设等比数列的前项和为,若,则数列的公比是.15.函数的图象向右平移个单位后,与函数的图象重合,则_____.16.设实数,满足,则的最大值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。为且面积为的菱形.17.(12分)已知椭圆的焦点在轴上,且顺次连接四个顶点恰好构成了一个边长(1)求椭圆的方程;(2)设,过椭圆右焦点的直线交于、两点,若对满足条件的任意直线,不等式恒成立,求的最小值.18.(12分)如图,三棱锥中,(1)证明:面面;(2)求二面角的余弦值.19.(12分)已知椭圆过点,设椭圆的上顶点为,右顶点和右焦点分别为,,且.(1)求椭圆的标准方程;(2)设直线交椭圆于,两点,设直线与直线的斜率分别为,,若,试判断直线是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.20.(12分)如图,四棱锥P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,(Ⅰ)证明;AC⊥BP;(Ⅱ)求直线AD与平面APC所成角的正弦值.21.(12分)已知函数,其中,为自然对数的底数.(1)当时,求函数的极值;(2)设函数的导函数为,求证:函数有且仅有一个零点.22.(10分)如图,在四棱锥中,平面ABCD平面PAD,,,,,E是PD的中点.证明:;设,点M在线段PC上且异面直线BM与CE所成角的余弦值为,求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先化简复数,再求,最后求即可.【详解】解:,,故选:C【点睛】考查复数的运算,是基础题.2、C【解析】根据程序框图程序运算即可得.【详解】依程序运算可得:,故选:C【点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.3、A【解析】先求的展开式,再分类分析中用哪一项与相乘,将所有结果为常数的相加,即为展开式的常数项,从而求出的值.【详解】展开式的通项为,当取2时,常数项为,当取时,常数项为由题知,则.故选:A.【点睛】本题考查了两个二项式乘积的展开式中的系数问题,其中对所取的项要进行分类讨论,属于基础题.4、C【解...