2024届北师大实验中学高三适应性调研考试数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a的取值范围是()A.B.C.D.2.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为()A.B.C.D.3.已知双曲线:的左右焦点分别为,,为双曲线上一点,为双曲线C渐近线上一点,,均位于第一象限,且,,则双曲线的离心率为()A.B.C.D.4.已知定义在上的函数满足,且当时,,则方程的最小实根的值为()A.B.C.D.5.设函数,则,的大致图象大致是的()A.B.C.D.6.函数在内有且只有一个零点,则a的值为()A.3B.-37.已知集合C.2D.-2,,则A.B.C.D.8.在中,点为中点,过点的直线与,所在直线分别交于点,,若,,则的最小值为()A.B.2C.3D.9.如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F且EF=,则下列结论中错误的是()A.AC⊥BEB.EF平面ABCDC.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值10.设双曲线的右顶点为,右焦点为,过点作平行的一条渐近线的直线与交于点,则的面积为()A.B.C.5D.611.已知是等差数列的前项和,若,,则()D.20A.5B.10C.15,则12.已知函数,集合,()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若,则______.14.不等式对于定义域内的任意恒成立,则的取值范围为__________.15.若在上单调递减,则的取值范围是_______16.将函数的图像向右平移个单位,得到函数的图像,则函数在区间上的值域为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)对于很多人来说,提前消费的认识首先是源于信用卡,在那个工资不高的年代,信用卡绝对是神器,稍微大件的东西都是可以选择用信用卡来买,甚至于分期买,然后慢慢还!现在银行贷款也是很风靡的,从房贷到车贷到一般的现金贷.信用卡“忽如一夜春风来”,遍布了各大小城市的大街小巷.为了解信用卡在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了100人进行抽样分析,得到如下列联表(单位:人)经常使用信用卡偶尔或不用信用卡合计40岁及以下15355040岁以上203050合计3565100(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关?(2)①现从所抽取的40岁及以下的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出4人赠送积分,求选出的4人中至少有3人偶尔或不用信用卡的概率;②将频率视为概率,从市所有参与调查的40岁以上的网民中随机抽取3人赠送礼品,记其中经常使用信用卡的人数为,求随机变量的分布列、数学期望和方差.参考公式:,其中.参考数据:0.150.100.050.0250.0102.0722.7063.8415.0246.63518.(12分)已知中,内角所对边分别是其中.,D,E分别为AB,BC的中(1)若角为锐角,且,求的值;(2)设,求的取值范围.19.(12分)如图,在直三棱柱点.中,,(1)证明:平面平面;(2)求点到平面的距离.20.(12分)在平面直角坐标系中,已知椭圆:()的左、右焦点分别为、,且点、与椭圆的上顶点构成边长为2的等边三角形.(1)求椭圆的方程;(2)已知直线与椭圆相切于点,且分别与直线和直线相交于点、.试判断是否为定值,并说明理由.21.(12分)已知椭圆的上顶点为,圆与轴的正半轴交于点,与有且仅有两个交点且都在轴上...