2024届华中师范大学第一附中高考数学全真模拟密押卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列命题为真命题的个数是()(其中,为无理数)①;②;③.A.0B.1C.2D.32.若,,,则下列结论正确的是()A.B.C.D.3.下列与的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z)B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z)D.kπ+(k∈Z)4.若函数为自然对数的底数)在区间上不是单调函数,则实数的取值范围是()A.B.C.D.5.设变量满足约束条件,则目标函数的最大值是()A.7B.5C.3D.26.已知函数,则()上单调递减A.函数在上单调递增B.函数在C.函数图像关于对称D.函数图像关于对称7.设复数满足(为虚数单位),则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限8.已知复数,其中为虚数单位,则()A.B.C.2D.9.一物体作变速直线运动,其曲线如图所示,则该物体在间的运动路程为()m.A.1B.C.D.210.在中,内角A,B,C所对的边分别为a,b,c,且.若,的面积为,则()A.5B.C.4D.16D.111.已知复数z满足,则z的虚部为()D.A.B.iC.–112.若集合,,则A.B.C.二、填空题:本题共4小题,每小题5分,共20分。13.安排名男生和名女生参与完成项工作,每人参与一项,每项工作至少由名男生和名女生完成,则不同的安排方式共有________种(用数字作答).14.在平面五边形中,,,,且.将五边形沿对角线折起,使平面与平面所成的二面角为,则沿对角线折起后所得几何体的外接球的表面积是______.15.学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“作品获得一等奖”;乙说:“作品获得一等奖”;丙说:“,两项作品未获得一等奖”;丁说:“是或作品获得一等奖”,若这四位同学中只有两位说的话是对的,则获得一等奖的作品是___.16.若满足约束条件,则的最小值是_________,最大值是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在多面体中,四边形是菱形,,,,平面,,,是的中点.(Ⅰ)求证:平面平面;(ⅠⅠ)求直线与平面所成的角的正弦值.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,∠BAD=60°,AB=PA=4,E是PA的中点,AC,BD交于点O.(1)求证:OE∥平面PBC;(2)求三棱锥E﹣PBD的体积.19.(12分)已知函数.(1)求不等式的解集;(2)若不等式对恒成立,求实数的取值范围.20.(12分)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.(1)求曲线的直角坐标方程和曲线的参数方程;(2)设曲线与曲线在第二象限的交点为,曲线与轴的交点为,点,求的周长的最.大值.为菱形,为与的交点,平面21.(12分)如图,四边形(1)证明:平面平面;(2)若,,三棱锥的体积为,求菱形的边长.22.(10分)某生物硏究小组准备探究某地区蜻蜓的翼长分布规律,据统计该地区蜻蜓有两种,且这两种的个体数量大致相等,记种蜻蜓和种蜻蜓的翼长(单位:)分别为随机变量,其中服从正态分布,服从正态分布.(Ⅰ)从该地区的蜻蜓中随机捕捉一只,求这只蜻蜓的翼长在区间的概率;(Ⅱ)记该地区蜻蜓的翼长为随机变量,若用正态分布来近似描述的分布,请你根据(Ⅰ)中的结果,求参数和的值(精确到0.1);(Ⅲ)在(Ⅱ)的条件下,从该地区的蜻蜓中随机捕捉3只,记这3只中翼长在区间的个数为,求的,分布列及数学期望(分布列写出计算表达式即可).注:若,则,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个...