2024届吉林省长春市重点名校高三第六次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数在时取得最小值,则()A.B.C.D.2.已知数列满足:.若正整数使得成立,则()A.16B.17C.18D.193.有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是()A.8B.7C.6D.4,平面4.已知四棱锥,底面ABCD是边长为1的正方形,平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为()A.B.C.D.15.已知集合,A.,则()C.B.6.已知函数D.,,则的极大值点为()A.B.C.D.7.抛物线的焦点为,点是上一点,,则()A.8.对于函数B.C.D.,定义满足的实数为的不动点,设,其中且,若有且仅有一个不动点,则的取值范围是()A.或B.C.或D.9.函数的大致图象为()A.B.C.D.10.根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为()A.B.C.D.11.已知集合,,,则的子集共有()A.个B.个C.个D.个12.等比数列中,,则与的等比中项是()A.±4B.4C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,椭圆的方程为,双曲线方程为,与的离心率之积为,则的渐近线方程为________.14.若正三棱柱的所有棱长均为2,点为侧棱上任意一点,则四棱锥的体积为__________.15.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),则⋅_____,△ABC的面积为_____.,若方程的解为,(),则_______;16.已知函数_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,直线与抛物线交于不同两点、,直线、与抛物线的另一交点分别为两点、,连接,点关于直线的对称点为点,连接、.(1)证明:;(2)若的面积,求的取值范围.18.(12分)选修4-5:不等式选讲已知函数(Ⅰ)解不等式;(Ⅱ)对及,不等式恒成立,求实数的取值范围.19.(12分)数列满足,,其前n项和为,数列的前n项积为.(1)求和数列的通项公式;(2)设,求的前n项和,并证明:对任意的正整数m、k,均有.20.(12分)设抛物线的焦点为,准线为,为抛物线过焦点的弦,已知以为直径的圆与相切于点.(1)求的值及圆的方程;(2)设为上任意一点,过点作的切线,切点为,证明:.21.(12分)为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据得到如图所示的频率分布直方图,若尺寸落在区间之外,则认为该零件属“不合格”的零件,其中,s分别为样本平均数和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).(1)求样本平均数的大小;(2)若一个零件的尺寸是100cm,试判断该零件是否属于“不合格”的零件.22.(10分)已知椭圆,点为半圆上一动点,若过作椭圆的两切线分别交轴于、两点.(1)求证:;(2)当时,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用辅助角公式化简的解析式,再根据正弦函数的最值,求得在函数...