2024届四川省眉山市青神县青神中学高三第二次联考数学试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.,则与位置关系是()A.平行B.异面C.相交D.平行或异面或相交2.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是()A.B.C.D.83.若双曲线的一条渐近线与圆至多有一个交点,则双曲线的离心率的取值范围是()D.A.B.C.4.点为不等式组所表示的平面区域上的动点,则的取值范围是()A.B.C.D.5.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的值为2,则输出的值为A.B.C.D.6.设是虚数单位,则“复数为纯虚数”是“”的()A.充要条件B.必要不充分条件C.既不充分也不必要条件D.充分不必要条件7.已知P是双曲线渐近线上一点,,是双曲线的左、右焦点,,记,PO,的斜率为,k,,若,-2k,成等差数列,则此双曲线的离心率为()A.B.C.D.8.已知平面向量,满足且,若对每一个确定的向量,记的最小值为,则当变化时,的最大值为()A.B.C.D.19.已知数列为等差数列,为其前项和,,则()A.B.C.D.10.已知函数,其中,记函数满足条件:为事件,则事件发生的概率为B.A.C.D.11.已知,,,则的大小关系为()A.B.C.D.12.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则()A.P1•P2=B.P1=P2=C.P1+P2=D.P1<P2二、填空题:本题共4小题,每小题5分,共20分。13.已知F为抛物线C:x2=8y的焦点,P为C上一点,M(﹣4,3),则△PMF周长的最小值是_____.14.根据如图的算法,输出的结果是_________.15.记为数列的前项和,若,则__________.16.已知双曲线(,)的左,右焦点分别为,,过点的直线与双曲线的左,右两支分别交于,两点,若,,则双曲线的离心率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)改革开放40年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各50人,进行问卷测评,所得分数的频率分布直方图如图所示.规定得分在80分以上为交通安全意识强.安全意识强安全意识不强合计男性女性合计(Ⅰ)求的值,并估计该城市驾驶员交通安全意识强的概率;(Ⅱ)已知交通安全意识强的样本中男女比例为4:1,完成2×2列联表,并判断有多大把握认为交通安全意识与性别有关;的分布列及期望.(Ⅲ)在(Ⅱ)的条件下,从交通安全意识强的驾驶员中随机抽取2人,求抽到的女性人数附:,其中0.0100.0050.0016.6357.87910.82818.(12分)如图,在四棱锥中,平面平面ABCD,,,底面ABCD是边长为2的菱形,点E,F分别为棱DC,BC的中点,点G是棱SC靠近点C的四等分点.求证:(1)直线平面EFG;(2)直线平面SDB.19.(12分)已知函数,(1)证明:在区间单调递减;(2)证明:对任意的有.20.(12分)如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点.(1)求异面直线AP,BM所成角的余弦值;(2)点N在线段AD上,且AN=λ,若直线MN与平面PBC所成角的正弦值为,求λ的值.21.(12分)已知.的单调区间;(1)若,求...