2024届四川省遂宁市遂宁二中高三第二次调研数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,且,则等于()A.4B.3C.2D.12.已知x,y满足不等式,且目标函数z=9x+6y最大值的变化范围[20,22],则t的取值范围()A.[2,4]B.[4,6]C.[5,8]D.[6,7]3.一个超级斐波那契数列是一列具有以下性质的正整数:从第三项起,每一项都等于前面所有项之和(例如:1,3,4,8,16…).则首项为2,某一项为2020的超级斐波那契数列的个数为()A.3B.4C.5D.64.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A.B.3C.D.25.如图是一个几何体的三视图,则该几何体的体积为()A.B.C.D.6.已知复数,为的共轭复数,则()A.B.C.D.7.双曲线的左右焦点为,一条渐近线方程为,过点且与垂直的直线分别交双曲线的左支及右支于,满足,则该双曲线的离心率为()A.B.3C.D.28.已知七人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为().A.432B.576C.696D.9609.正的边长为2,将它沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为()A.B.C.D.10.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为()A.B.C.D.11.函数的部分图象大致是()A.B.C.D.12.设等差数列的前项和为,若,,则()A.21B.22C.11D.12二、填空题:本题共4小题,每小题5分,共20分。13.已知复数z是纯虚数,则实数a=_____,z=_____.14.(x+y)(2x-y)5的展开式中x3y3的系数为________.15.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为________.16.若函数,其中且,则______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司年的相关数据如下表所示:年份20112012201320142015201620172018年生产台数(万台)2345671011该产品的年利润(百万元)2.12.753.53.2534.966.5年返修台数(台)2122286580658488部分计算结果:,,,,注:年返修率=(1)从该公司年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;(百万元)关于年(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润生产台数(万台)的线性回归方程(精确到0.01).附:线性回归方程中,,.18.(12分)设实数满足.(1)若,求的取值范围;(2)若,,求证:.19.(12分)已知函数.(1)若是的极值点,求的极大值;(2)求实数的范围,使得恒成立.20.(12分)已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.(1)求的方程;(2)过点的直线与相交于、两点,与相交于、两点,且与同向,设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形;(3)为上的动点,、为长轴的两个端点,过点作的平行线交椭圆于点,过点作的平行线交椭圆于点,请问的面积是否为定值,并说明理由.21.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大小;(2)若△ABC外接圆的半径为,求△ABC面积的最大值.22.(10分)在创建“全国文明卫生城”过程中,运城市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次),通过随机抽样,得到参加问卷调查的人的得分统计结果如表所示:.组别频数似为这人得分的平均值(同一组中的数...