2024届天津新华中学高三适应性调研考试数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线的焦点为,过点的直线与抛物线交于,两点(设点位于第一象限),过点,分别作抛物线的准线的垂线,垂足分别为点,,抛物线的准线交轴于点,若,则直线的斜率为A.1B.C.D.2.如图,在沿着AM翻折成中,点M是边的中点,将,且点不在平面内,点是线段上一点.若二面角与二面角的平面角相等,则直线经过的()A.重心B.垂心C.内心D.外心3.已知数列中,,(),则等于()A.B.C.D.2关于直线4.是抛物线上一点,是圆的对称圆上的一点,则最小值是()A.B.C.D.5.已知函数是定义在上的奇函数,函数满足,且时,,则()B.A.2C.1D.6.已知是定义是上的奇函数,满足,当时,,则函数在区间上的零点个数是()A.3B.5C.7D.97.已知复数,则的共轭复数在复平面对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限8.复数的虚部为()A.B.C.2D.9.已知某口袋中有3个白球和个黑球(),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是.若,则=()A.B.1C.D.210.已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的()A.B.C.D.11.命题:的否定为A.B.C.D.12.已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则()A.1194B.1695C.311D.1095平行”是“a=2”的_______条件(填“充分不必要”、“必二、填空题:本题共4小题,每小题5分,共20分。13.“直线l1:与直线l2:要不充分”、“充分必要”或“既不充分又不必要”).14.已知向量,满足,,且已知向量,的夹角为,,则的最小值是__.15.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.16.点是曲线()图象上的一个定点,过点的切线方程为,则实数k的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角A、B、C的对边分别为a、b、c,且.(1)求角A的大小;,的平分线与交于点D,与的外接圆交于点E(异于点A),(2)若,求的值.18.(12分)百年大计,教育为本.某校积极响应教育部号召,不断加大拔尖人才的培养力度,为清华、北大等排名前十的名校输送更多的人才.该校成立特长班进行专项培训.据统计有如下表格.(其中表示通过自主招生获得降分资格的学生人数,表示被清华、北大等名校录取的学生人数)年份(届)2014201520162017201841495557638296108106123(1)通过画散点图发现与之间具有线性相关关系,求关于的线性回归方程;(保留两位有效数字)(2)若已知该校2019年通过自主招生获得降分资格的学生人数为61人,预测2019年高考该校考人名校的人数;(3)若从2014年和2018年考人名校的学生中采用分层抽样的方式抽取出5个人回校宣传,在选取的5个人中再选取2人进行演讲,求进行演讲的两人是2018年毕业的人数的分布列和期望.参考公式:,参考数据:,,,19.(12分)已知等差数列的前n项和为,且,.求数列的通项公式;求数列的前n项和.20.(12分)已知函数.(1)若,求不等式的解集;(2)已知,若对于任意恒成立,求的取值范围.21.(12分)如图,在矩形中,,,点是边上一点,...