2024届宁夏银川二十四中高三最后一模数学试题注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是()A.B.C.D.2.已知函数是定义在上的奇函数,函数满足,且时,,则()A.2B.C.1D.3.已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是()B.椭圆,但要去掉两个点A.圆,但要去掉两个点D.抛物线,但要去掉两个点C.双曲线,但要去掉两个点4.已知集合(),若集合,且对任意的,存在使得,其中,,则称集合A为集合M的基底.下列集合中能作为集合的基底的是()A.B.C.D.25.已知与之间的一组数据:3413.24.87.5,且若关于的线性回归方程为,则的值为()A.1.5B.2.5C.3.5D.4.56.在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,则面积的最大值是()A.B.C.D.7.已知,,则()A.B.C.3D.48.已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为()A.B.C.D.9.已知双曲线的焦距是虚轴长的2倍,则双曲线的渐近线方程为()A.B.C.D.10.一只蚂蚁在边长为的正三角形区域内随机爬行,则在离三个顶点距离都大于的区域内的概率为()A.B.C.D.11.已知双曲线(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是()A.B.(1,2),C.D.12.已知双曲线的一条渐近线的倾斜角为,且,则该双曲线的离心率为()A.B.C.2D.4二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙两人下棋,两人下成和棋的概率是,乙获胜的概率是,则乙不输的概率是_____.14.连续掷两次骰子,分别得到的点数作为点的坐标,则点落在圆内的概率为______________.15.将底面直径为4,高为的圆锥形石块打磨成一个圆柱,则该圆柱的侧面积的最大值为__________.16.已知x,y>0,且,则x+y的最小值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若对于任意实数,恒成立,求实数的范围;(2)当时,是否存在实数,使曲线:在点处的切线与轴垂直?若存在,求出的值;若不存在,说明理由.18.(12分)如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为棱上的动点,且.(I)求证:为直角三角形;(II)试确定的值,使得二面角的平面角余弦值为.19.(12分)中,内角的对边分别为,.(1)求的大小;(2)若,且为的重心,且,求的面积.20.(12分)甲、乙两班各派三名同学参加知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是,乙班三名同学答对的概率分别是,,,且这六名同学答题正确与否相互之间没有影响.(1)记“甲、乙两班总得分之和是60分”为事件,求事件发生的概率;(2)用表示甲班总得分,求随机变量的概率分布和数学期望.21.(12分)设实数满足.(1)若,求的取值范围;(2)若,,求证:.22.(10分)某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了健身促销活动,收费标准如下:健身时间不超过1小时免费,超过1小时的部分每小时收费标准为20元(不足l小时的部分按1小时计算).现有甲、乙两人各自独立地来该健身馆健身,设甲、乙健身时间不超过1小时的概率分别为,,健身时间1小时以上且不超过2小时的概率分别为,,且两人健身时间都不会超过3小时.(1)设甲、乙两人所付的健身费用之和为随机变量(单位:元),求的分布列与数学期望;(2)此促销活动推出后,健身馆预计每天约有300人来参与健身活动,以这两人健身费用之和的数学期望为依...