2024届安徽省濉溪县高三第六次模拟考试数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.棱长为2的正方体内有一个内切球,过正方体中两条异面直线,的中点作直线,则该直线被球面截在球内的线段的长为()A.B.C.D.12.在边长为2的菱形中,,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外接球的表面积为()A.B.C.D.3.等差数列中,已知,且,则数列的前项和中最小的是()A.或B.C.D.4.已知数列满足,且,则数列的通项公式为()A.B.C.D.5.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元6.设集合,,则集合A.B.C.D.7.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于().A.B.C.D.8.记为数列的前项和数列对任意的满足.若,则当取最小值时,等于()A.6B.7C.8D.99.某四棱锥的三视图如图所示,则该四棱锥的体积为()A.B.C.D.10.已知等差数列中,,则()A.20B.18C.16D.1411.已知为坐标原点,角的终边经过点且,则()A.B.C.D.12.已知,则的大小关系为()A.B.C.D.,P为BE上一点,且满足二、填空题:本题共4小题,每小题5分,共20分。13.如图,在△ABC中,E为边AC上一点,且,则的最小值为______.14.若奇函数满足,为R上的单调函数,对任意实数都有,当时,,则________.15.若函数(a>0且a≠1)在定义域[m,n]上的值域是[m2,n2](1<m<n),则a的取值范围是_______.16.在三棱锥P-ABC中,,,,三个侧面与底面所成的角均为,三棱锥的内切球的表面积为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为(为参数),求直线与曲线的交点的直角坐标.18.(12分)一张边长为的正方形薄铝板(图甲),点,分别在,上,且(单位:).现将该薄铝板沿裁开,再将沿折叠,沿折叠,使,重合,且重合于点,制作成一个无盖的三棱锥形容器(图乙),记该容器的容积为(单位:),(注:薄铝板的厚度忽略不计)(1)若裁开的三角形薄铝板恰好是该容器的盖,求,的值;(2)试确定的值,使得无盖三棱锥容器的容积最大.19.(12分)在平面直角坐标系中,点是直线上的动点,为定点,点为的中点,动点满足,且,设点的轨迹为曲线.(1)求曲线的方程;(2)过点的直线交曲线于,两点,为曲线上异于,的任意一点,直线,分别交直线于,两点.问是否为定值?若是,求的值;若不是,请说明理由.20.(12分)表示,中的最大值,如,己知函数,.(1)设,求函数在上的零点个数;(2)试探讨是否存在实数,使得对恒成立?若存在,求的取值范围;若不存在,说明理由.21.(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的人的得分(满分:分)数据,统计结果如下表所示.组别,近似为这人得分的平均值(同一组中的数据用频数(1)已知此次...