2024届山东省兖州市第一中学高三第三次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,则()A.α∥β且∥αB.α⊥β且⊥βC.α与β相交,且交线垂直于D.α与β相交,且交线平行于2.若,,,点C在AB上,且,设,则的值为()A.B.C.D.3.设,,则的值为()A.B.C.D.4.复数(为虚数单位),则的共轭复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A.10B.9C.8D.76.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A.72B.64C.48D.327.已知集合,定义集合等于(),则A.B.C.D.8.复数的共轭复数为()A.B.C.D.9.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则10.在中,,,,为的外心,若,,,则()A.B.C.D.11.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为()A.B.C.D.12.已知函数,则下列判断错误的是()A.的最小正周期为B.的值域为C.的图象关于直线对称D.的图象关于点对称二、填空题:本题共4小题,每小题5分,共20分。13.已知关于的不等式对于任意恒成立,则实数的取值范围为_________.14.双曲线的焦点坐标是_______________,渐近线方程是_______________.15.已知集合,则_______.16.已知,在方向上的投影为,则与的夹角为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求函数在处的切线方程;(2)若函数没有零点,求实数的取值范围.18.(12分)已知正项数列的前项和..(1)若数列为等比数列,求数列的公比的值;(2)设正项数列的前项和为,若,且①求数列的通项公式;②求证:.19.(12分)直线与抛物线相交于,两点,且,若,到轴距离的乘积为.(1)求的方程;(2)设点为抛物线的焦点,当面积最小时,求直线的方程.20.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面积.21.(12分)已知函数(其中是自然对数的底数)(1)若在R上单调递增,求正数a的取值范围;(2)若f(x)在处导数相等,证明:;(3)当时,证明:对于任意,若,则直线与曲线有唯一公共点(注:当时,直线与曲线的交点在y轴两侧).22.(10分)如图所示,直角梯形ABCD中,,,,四边形EDCF为矩形,,平面平面ABCD.(1)求证:平面ABE;(2)求平面ABE与平面EFB所成锐二面角的余弦值.(3)在线段DF上是否存在点P,使得直线BP与平面ABE所成角的正弦值为,若存在,求出线段BP的长,若不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】试题分析:由平面,直线满足,且,所以,又平面,,所以,由直线为异面直线,且平面平面,则与相交,否则,若则推出,与异面矛盾,所以相交,...