2024届山东省威海市二中高考数学一模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X的期望为()A.B.C.1D.22.已知函数,满足对任意的实数,都有成立,则实数的取值范围为()A.B.C.D.3.在我国传统文化“五行”中,有“金、木、水、火、土”五个物质类别,在五者之间,有一种“相生”的关系,具体是:金生水、水生木、木生火、火生土、土生金.从五行中任取两个,这二者具有相生关系的概率是()A.0.2B.0.5C.0.4D.0.84.在棱长为2的正方体ABCD−A1B1C1D1中,P为A1D1的中点,若三棱锥P−ABC的四个顶点都在球O的球面上,则球O的表面积为()A.12B.C.D.105.复数满足(为虚数单位),则的值是()A.B.C.D.6.已知函数且的图象恒过定点,则函数图象以点为对称中心的充要条件是()A.B.C.D.7.“”是“函数的图象关于直线对称”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.已知集合.为自然数集,则下列表示不正确的是()A.B.C.D.9.已知集合,,则()A.B.C.D.10.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为()A.2B.C.6D.811.若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于()A.B.C.2或D.2或12.在正方体中,点、分别为、的中点,过点作平面使平面,平面若直线平面,则的值为()A.B.C.D.的右焦点重合,直线过抛物线的焦点与抛物线交于、二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点和椭圆两点和椭圆交于、两点,为抛物线准线上一动点,满足,,当面积最大时,直线的方程为______.14.函数(为自然对数的底数,),若函数恰有个零点,则实数的取值范围为__________________.15.若,i为虚数单位,则正实数的值为______.16.已知椭圆与双曲线(,)有相同的焦点,其左、右焦点分别为、,若椭圆与双曲线在第一象限内的交点为,且,则双曲线的离心率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)当时,解不等式;(2)设,且当时,不等式有解,求实数的取值范围.18.(12分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)证明:19.(12分)[选修4-5:不等式选讲]:已知函数.(1)当时,求不等式的解集;(2)设,,且的最小值为.若,求的最小值.20.(12分)已知函数.(1)若在上为单调函数,求实数a的取值范围:(2)若,记的两个极值点为,,记的最大值与最小值分别为M,m,求的值.中,,,,点为21.(12分)如图所示,在三棱锥中点.(1)求证:平面平面;(2)若点为中点,求平面与平面所成锐二面角的余弦值.22.(10分)设椭圆的离心率为,左、右焦点分别为,点D在椭圆C上,的周长为.(1)求椭圆C的标准方程;(2)过圆上任意一点P作圆E的切线l,若l与椭圆C交于A,B两点,O为坐标原点,求证:为定值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】每一次成功的概率为,服从二项分布,计算得到答案.【详解】每一次成功的概率为,服从二项分布,故.故选:.【点睛】本题考查了二项分布求数学期望,意在考查学生的计算能力和应用能力.2、B【解析】由题意可知函数为上为减函数,可知函数为减函数,且,由此可解得实数的取值范围.【详解】由题意知函数是上的减函数,于是有,解得,因此,实数的取值范围是.故选:B.【点睛】本题考查利用分段函数的单调性求参数,一般要分析每支函数的单调性,...