2024届山东省沂水县高考数学一模试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是边长为的正三角形,若,则A.B.C.D.2.某几何体的三视图如图所示,则该几何体中的最长棱长为()A.B.C.D.为该抛物线上一点,以为圆心的圆与的准线3.已知抛物线:()的焦点为,相切于点,,则抛物线方程为()A.4.已知全集B.C.D.A.,则集合D.的子集个数为()B.C.5.如图,在矩形中的曲线分别是,的一部分,,,在矩形内随机取一点,若此点取自阴影部分的概率为,取自非阴影部分的概率为,则()A.B.C.D.大小关系不能确定6.已知双曲线的一条渐近线倾斜角为,则()A.3B.C.D.7.已知函数在上都存在导函数,对于任意的实数都有,当时,,若,则实数的取值范围是()A.B.C.D.8.已知,满足条件(为常数),若目标函数的最大值为9,则()A.B.C.D.9.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为,设地球半径为,该卫星近地点离地面的距离为,则该卫星远地点离地面的距离为()A.B.C.D.10.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是().A.B.C.D.,且在区间11.定义在R上的偶函数满足上单调递减,已知是锐角三角形的两个内角,则的大小关系是()A.B.C.D.以上情况均有可能12.在钝角中,角所对的边分别为,为钝角,若,则的最大值为()A.B.C.1D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在等腰三角形中,已知,,分别是边上的点,且,其中且,若线段的中点分别为,则的最小值是_____.14.在的展开式中,的系数为________.15.戊戌年结束,己亥年伊始,小康,小梁,小谭,小杨,小刘,小林六人分成四组,其中两个组各2人,另两个组各1人,分别奔赴四所不同的学校参加演讲,则不同的分配方案有_________种(用数字作答),16.在的展开式中的系数为,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中.(Ⅰ)当时,求函数的单调区间;(Ⅱ)设,求证:;(Ⅲ)若对于恒成立,求的最大值.18.(12分)如图,在长方体中,,为的中点,为的中点,为线段上一点,且满足,为的中点.(1)求证:平面;(2)求二面角的余弦值.19.(12分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,,求的取值范围.20.(12分)已知函数,函数,其中,是的一个极值点,且.(1)讨论的单调性(2)求实数和a的值(3)证明21.(12分)电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女1055合计(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63522.(10分)如图,已知椭圆经过点,且离心率,过右焦点且不与坐标轴垂直的直线与椭圆相交于两点.(1)求椭圆的标准方程;的斜率分别为,求证:(2)设椭圆的右顶点为,线段的中点为,记直线为定值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由可得,因为是边长为的正三角形,所以,故选A.2、C【解析】根据三视图,可得该几何体是一个三棱锥,并且平面SAC平面ABC,,过S作,连接BD,,再求得其它的棱长...