2024届山东省淄博一中下学期高三第一次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的一个焦点为,且与双曲线的渐近线相同,则双曲线的标准方程为()A.B.C.D.2.函数的图象可能是下列哪一个?()A.B.C.D.3.已知函数f(x)=sin2x+sin2(x),则f(x)的最小值为()A.B.C.D.4.定义两种运算“★”与“◆”,对任意,满足下列运算性质:①★,◆;②()★★,◆◆,则(◆2020)(2020★2018)的值为()A.B.C.D.,,则与的夹角为()5.已知非零向量,满足A.B.C.D.6.已知等差数列中,则()A.10B.16C.20D.247.已知函数是奇函数,则的值为()A.-10B.-9C.-7D.18.已知展开式中第三项的二项式系数与第四项的二项式系数相等,,若,则的值为()A.1B.-1C.8lD.-819.设是虚数单位,则()A.B.C.D.10.关于函数,下列说法正确的是()A.函数的定义域为B.函数一个递增区间为C.函数的图像关于直线对称D.将函数图像向左平移个单位可得函数的图像11.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数﹔最后根据统计数来估计的值.若,则的估计值为()A.B.C.D.12.在中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.假设10公里长跑,甲跑出优秀的概率为,乙跑出优秀的概率为,丙跑出优秀的概率为,则甲、乙、丙三人同时参加10公里长跑,刚好有2人跑出优秀的概率为________.14.若在上单调递减,则的取值范围是_______15.根据如图的算法,输出的结果是_________.16.如图,已知扇形的半径为1,面积为,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角,,的对边分别是,,,已知.(1)求角;(2)若,,求的面积.18.(12分)已知椭圆与抛物线有共同的焦点,且离心率为,设分别是为椭圆的上下顶点(1)求椭圆的方程;(2)过点与轴不垂直的直线与椭圆交于不同的两点,当弦的中点落在四边形内(含边界)时,求直线的斜率的取值范围.19.(12分)在底面为菱形的四棱柱中,平面.(1)证明:平面;(2)求二面角的正弦值.20.(12分)已知椭圆,上顶点为,离心率为,直线交轴于点,交椭圆于,两点,直线,分别交轴于点,.(Ⅰ)求椭圆的方程;(Ⅱ)求证:为定值.21.(12分)已知抛物线:()上横坐标为3的点与抛物线焦点的距离为4.(1)求p的值;(2)设()为抛物线上的动点,过P作圆的两条切线分别与y轴交于A、B两点.求的取值范围.α为参数)上每个点的横坐标变为原来的倍,纵坐标22.(10分)在直角坐标系x0y中,把曲线不变,得到曲线以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程(1)写出的普通方程和的直角坐标方程;(2)设点M在上,点N在上,求MN的最小值以及此时M的直角坐标.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据焦点所在坐标轴和渐近线方程设出双曲线的标准方程,结合焦点坐标求解.【详解】 双曲线与的渐近线相同,且焦点在轴上,∴可设双曲线的方程为,一个焦点为,∴,∴,故的标准方程为.故选:B【点睛】此题考查根据双曲线的渐近线和焦点求解双曲线的标准方程,易错点在于漏掉考虑焦点所在坐标轴导致方...