2024届山东省滕州市第二中学高三3月份模拟考试数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则()A.B.C.D.2.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数﹔最后根据统计数来估计的值.若,则的估计值为()A.B.C.D.3.已知数列的通项公式为,将这个数列中的项摆放成如图所示的数阵.记为数阵从左至右的列,从上到下的行共个数的和,则数列的前2020项和为()A.B.C.D.4.已知椭圆的焦点分别为,,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为()A.B.C.D.5.若函数的图象上两点,关于直线的对称点在的图象上,则的取值范围是()A.B.C.D.6.已知复数满足,则()A.B.C.D.7.设等差数列的前项和为,若,则()A.23B.25C.28D.298.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为A.B.C.D.9.已知函数且的图象恒过定点,则函数图象以点为对称中心的充要条件是(),若对每一个确定的向量,记的最A.B.C.D.10.已知平面向量,满足且小值为,则当变化时,的最大值为()A.B.C.D.111.已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是()A.B.C.D.12.已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.满足线性的约束条件的目标函数的最大值为________14.已知集合,,则_________.15.已知双曲线的两条渐近线方程为,若顶点到渐近线的距离为1,则双曲线方程为.16.若变量x,y满足:,且满足,则参数t的取值范围为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图在四边形中,,,为中点,.(1)求;(2)若,求面积的最大值.18.(12分)如图,平面四边形中,,是上的一点,是的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.19.(12分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.20.(12分)在平面直角坐标系中,直线的参数方程为(为参数),曲线的极坐标方程为.(Ⅰ)求直线的普通方程及曲线的直角坐标方程;(Ⅱ)设点,直线与曲线相交于,,求的值.21.(12分)已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量....