2024届山东省青岛市城阳第二高级中学高三下学期一模考试数学试题注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数与的图象上存在关于直线对称的点,则的取值范围是()A.B.C.D.2.是恒成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知数列满足,且成等比数列.若的前n项和为,则的最小值为()A.B.C.D.4.已知,是椭圆的左、右焦点,过的直线交椭圆于两点.若依次构成等差数列,且,则椭圆的离心率为A.B.C.D.5.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,则()A.α∥β且∥αB.α⊥β且⊥βC.α与β相交,且交线垂直于D.α与β相交,且交线平行于6.设全集集合,则()A.B.C.D.7.已知,若则实数的取值范围是()A.B.C.D.8.已知函数的导函数为,记,,…,N.若,则()A.B.C.D.9.设等差数列的前项和为,若,则()A.23B.25C.28D.2910.年部分省市将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A.B.C.,集合D.,则阴影部分表示的集合是()11.已知全集,A.B.C.D.,则()12.设曲线在点处的切线方程为D.4A.1B.2C.3二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的一条渐近线经过点,则该双曲线的离心率为_______.14.在平面直角坐标系中,点P在直线上,过点P作圆C:的一条切线,切点为T.若,则的长是______.15.已知等差数列的前项和为,且,则______.16.已知函数图象上一点处的切线方程为,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)判断函数在区间上的零点的个数;(2)记函数在区间上的两个极值点分别为、,求证:.18.(12分)已知.(1)解关于x的不等式:;(2)若的最小值为M,且,求证:.19.(12分)已知函数.(1)当时,求的单调区间.(2)设直线是曲线的切线,若的斜率存在最小值-2,求的值,并求取得最小斜率时切线的方程.(3)已知分别在,处取得极值,求证:.20.(12分)已知抛物线的焦点为,点,点为抛物线上的动点.(1)若的最小值为,求实数的值;(2)设线段的中点为,其中为坐标原点,若,求的面积..21.(12分)已知.(1)若曲线在点处的切线也与曲线相切,求实数的值;(2)试讨论函数零点的个数.22.(10分)已知,,分别是三个内角,,的对边,(1)求;(2)若,,求,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.与有公共点,即方程有解,【详解】解:由题可知,曲线即有解,令,则,则当时,;当时,,故时,取得极大值,也即为最大值,当趋近于时,趋近于,所以满足条件.故选:C.【点睛】本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题.2、A【解析】设成立;反之,满足,但,故选A.3、D或时,取到最小【解析】利用等比中项性质可得等差数列的首项,进而求得,再利用二次函数的性质,可得当值.【详解】根据题意,可知为等差数列,公差,由成等比数列,可得,∴,解得.∴.根据单调性,可知当或时,取到最小值,最小值为.故选:D.【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当或时同时取到最值.4、D【解析】如...