电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

2024届山西省朔州市怀仁市高考压轴卷数学试卷含解析.doc

2024届山西省朔州市怀仁市高考压轴卷数学试卷含解析.doc_第1页
1/23
2024届山西省朔州市怀仁市高考压轴卷数学试卷含解析.doc_第2页
2/23
2024届山西省朔州市怀仁市高考压轴卷数学试卷含解析.doc_第3页
3/23
2024 届山西省朔州市怀仁市高考压轴卷数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义在上的奇函数和偶函数满足(且),若,则函数的单调递增区间为( )A.B.C.D.2.已知实数,,函数在上单调递增,则实数的取值范围是( )A.B.C.D.3.在中所对的边分别是,若,则( )A.37B.13C.D.4.已知函数,若,则的值等于( )A.B.C.D.5.下列函数中,值域为的偶函数是( )A.B.C.D.6.函数(且)的图象可能为( )A.B.C.D.7.已知复数满足,则的共轭复数是( )A.B.C.D.8.已知七人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为( ).A.432B.576C.696D.9609.已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为( )A.B.C.D.10.一个四面体所有棱长都是 4,四个顶点在同一个球上,则球的表面积为( )A.B.C.D.11.函数()的图象的大致形状是( )A.B.C.D.12.已知向量,,且,则( )A.B.C.1D.2二、填空题:本题共 4 小题,每小题 5 分,共 20 分。13.函数的最大值与最小正周期相同,则在上的单调递增区间为______.14.已知定义在的函数满足,且当时,,则的解集为__________________.15.已知函数的最小值为 2,则_________.16.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________.三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。17.(12 分)已知,,函数的最小值为.(1)求证:;(2)若恒成立,求实数 的最大值.18.(12 分)已知函数(),是的导数.(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;(2)已知函数在上单调递减,求的取值范围.19.(12 分)在中,角的对边分别为,且.(1)求角的大小;(2)已知外接圆半径,求的周长.20.(12 分)已知数列,其前项和为,满足,,其中,,,.⑴ 若,,(),求证:数列是等比数列;⑵ 若数列是等比数列,求,的值;⑶ 若,且,求证:数列是等差数列.21.(12 分)在中,角的对边分别为,且.(1)求角的大小;(2)若函数图象的一条对称轴方程为且,求的值.22.(10 分)如图,在三棱柱中,是边长为 2 的等边三角形,,,.(1)证明:平面平面;(2),分别是,的中点,是线段上的动点,若二面角的平面角的大小为,试确定点的位置.参考答案一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据函数的奇偶性用方程法求出的解析式,进而求出,再根据复合函数的单调性,即可求出结论.【详解】依题意有, ①, ②①② 得,又因为,所以,在上单调递增,所以函数的单调递增区间为.故选:D.【点睛】本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.2、D【解析】根据题意,对于函数分 2 段分析:当,由指数函数的性质分析可得①,当,由导数与函数单调性的关系可得,在上恒成立,变形可得②,再结合函数的单调性,分析可得③,联立三个式子,分析可得答案.【详解】解:根据题意,函数在上单调递增,当,若为增函数,则①,当,若为增函数,必有在上恒成立,变形可得:,又由,可得在上单调递减,则,若在上恒成立,则有②,若函数在上单调递增,左边一段函数的最大值不能大于右边一段函数的最小值,则需有,③联立①②③可得:.故选:D.【点睛】本题考查函数单调性的性质以及应用,注意分段函数单调性的性质.3、D【解析】直接根据余弦定理求解即可.【详解】解...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2024届山西省朔州市怀仁市高考压轴卷数学试卷含解析.doc

您可能关注的文档

确认删除?