2024届广东省茂名地区高考数学二模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为()D.A.B.3C.22.要得到函数的图象,只需将函数图象上所有点的横坐标()A.伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度B.伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移个单位长度C.缩短到原来的倍(纵坐标不变),再将得到的图象向左平移个单位长度D.缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位长度3.当输入的实数时,执行如图所示的程序框图,则输出的不小于103的概率是()A.B.C.D.4.若函数()的图象过点,则()A.函数的值域是B.点是的一个对称中心C.函数的最小正周期是D.直线是的一条对称轴5.已知复数,若,则的值为()A.1B.C.D.6.已知某几何体的三视图如图所示,则该几何体外接球的表面积为()A.B.C.D.的渐近线与圆相切,则双曲线的离心率为()7.若双曲线A.2B.C.D.8.已知,则不等式的解集是()A.B.C.D.9.已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为()A.B.C.D.10.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,则“函数有两个零点”是“”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件恒成立的()11.是B.必要不充分条件A.充分不必要条件C.充要条件D.既不充分也不必要条件12.把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么所得图象的一个对称中心为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。,且.若,则实数的取值范围为___13.记数列的前项和为,已知_____.14.直线xsinα+y+2=0的倾斜角的取值范围是________________.15.已知平面向量与的夹角为,,,则________.16.在等比数列中,,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C:x24py(p为大于2的质数)的焦点为F,过点F且斜率为k(k0)的直线交C于A,B两点,线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG的面积为S.(1)求点G的轨迹方程;(2)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.18.(12分)如图,在四棱锥中底面是菱形,,是边长为的正三角形,,为线段的中点.求证:平面平面;是否存在满足的点,使得?若存在,求出的值;若不存在,请说明理由..19.(12分)已知函数(1)若,证明:当时,;(2)若在只有一个零点,求的值.20.(12分)如图,点是以为直径的圆上异于、的一点,直角梯形所在平面与圆所在平面垂直,且,.(1)证明:平面;(2)求点到平面的距离.21.(12分)已知实数x,y,z满足,证明:.22.(10分)已知,均为正数,且.证明:(1);(2).参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】本道题结合双曲线的性质以及余弦定理,建立关于a与c的等式,计算离心率,即可.【详解】结合题意,绘图,结合双曲线性质可以得到PO=MO,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故对三角形运用余弦定理,得到,而结合,可得,,代入上式子中,得到,结合离心率满足,即可得出,故选D.【点睛】本道题考查了余弦定理以及双曲线的性质,难度偏难.2、B【解析】分析:根据三角函数的图象关系进行判断即可...