2024届广东省茂名市实验中学高三(最后冲刺)数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;其中真命题的个数为()A.3B.2C.1D.02.设集合,,则()A.B.C.D.3.已知命题,那么为()A.B.C.D.4.在中,分别为所对的边,若函数B.有极值点,则的范围是()A.C.D.5.已知函数(,)的一个零点是,函数图象的一条对称轴是直线,则当取得最小值时,函数的单调递增区间是()A.()B.()C.()D.()6.在区间上随机取一个实数,使直线与圆相交的概率为()A.B.C.D.7.三棱柱中,底面边长和侧棱长都相等,,则异面直线与所成角的余弦值为()A.B.C.D.8.在A.74的展开式中,含的项的系数是()9.已知椭圆B.121C.D.的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为()A.B.C.D.10.已知函数,,若存在实数,使成立,则正数的取值范围为()A.B.C.D.,则向量在向量方向的投影为()11.已知,,若A.B.C.D.12.在中,,分别为,的中点,为上的任一点,实数,满足,设、、、的面积分别为、、、,记(),则取到最大值时,的值为()A.-1B.1C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的图象在处的切线斜率为,则______.14.的展开式中,若的奇数次幂的项的系数之和为32,则________.15.设向量,,且,则_________.16.在四棱锥中,是边长为的正三角形,为矩形,,.若四棱.锥的顶点均在球的球面上,则球的表面积为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。满足关系式17.(12分)已知数列的各项均为正数,为其前n项和,对于任意的(1)求数列的通项公式;(2)设数列的通项公式是,前n项和为,求证:对于任意的正数n,总有.18.(12分)已知均为正实数,函数的最小值为.证明:(1);(2).19.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若函数图象的一条对称轴方程为且,求的值.20.(12分)已知函数.(1)当时,判断在上的单调性并加以证明;(2)若,,求的取值范围.21.(12分)对于非负整数集合(非空),若对任意,或者,或者,则称为一个好集合.以下记为的元素个数.(1)给出所有的元素均小于的好集合.(给出结论即可)(2)求出所有满足的好集合.(同时说明理由)(3)若好集合满足,求证:中存在元素,使得中所有元素均为的整数倍.22.(10分)在中,角,,的对边分别为,,,,,且的面积为.(1)求;(2)求的周长.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据抽样方式的特征,可判断①;根据相关系数的性质,可判断②;根据独立性检验的方法和步骤,可判断③.【详解】①根据抽样是间隔相同,且样本间无明显差异,故①应是系统抽样,即①为假命题;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故②为真命题;③对分类变量与的随机变量的观测值来说,越小,“与有关系”的把握程度越小,故③为假命题.故选:.【点睛】本题以命题的真假判断为载体考查了抽样方法、相关系数、独立性检验等知识点,属于基础题.2、D【解析】利用一元二次不等式的解法和集合的交运算求解即可.【详解】由题意知,集合,,由集合的交运算可得,.故选:D【点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求...