2024届广西玉林市容县高级中学高三第二次诊断性检测数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在复平面内,复数(为虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.在中,在边上满足,为的中点,则().A.B.C.D.3.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种值的表达式纷纷出现,使得值的计算精度也迅速增加.华理斯在1655年求出一个公式:,根据该公式绘制出了估计圆周率的近似值的程序框图,如下图所示,执行该程序框图,已知输出的,若判断框内填入的条件为,则正整数的最小值是A.B.C.D.4.在中,角、、所对的边分别为、、,若,则()A.B.C.D.5.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则()A.P1•P2=B.P1=P2=C.P1+P2=D.P1<P26.已知为虚数单位,复数满足,则复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限7.若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是()A.B.C.D.8.已知函数,若曲线上始终存在两点,,使得,且的中点在轴上,则正实数的取值范围为()A.B.C.D.9.若执行如图所示的程序框图,则输出的值是()A.B.C.D.410.已知函数是定义在上的奇函数,函数满足,且时,,则()B.A.2C.1D.11.过双曲线的右焦点F作双曲线C的一条弦AB,且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为()A.B.C.2D.12.是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.(5分)如图是一个算法的流程图,若输出的值是,则输入的值为____________.14.若点为点在平面上的正投影,则记.如图,在棱长为1的正方体中,记平.给出下列四个结论:面为,平面为,点是线段上一动点,①为的重心;②;③当时,平面;④当三棱锥的体积最大时,三棱锥外接球的表面积为.其中,所有正确结论的序号是________________.15.若非零向量,满足,,,则______.16.设函数,若对于任意的,∈[2,,≠,不等式恒成立,则实数a的取值范围是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角所对的边分别是,且.(1)求角的大小;(2)若,求边长.18.(12分)的内角,,的对边分别为,,,其面积记为,满足.(1)求;(2)若,求的值.19.(12分)在直角坐标系中,是过定点且倾斜角为的直线;在极坐标系(以坐标原点为极点,以轴非负半轴为极轴,取相同单位长度)中,曲线的极坐标方程为.(1)写出直线的参数方程,并将曲线的方程化为直角坐标方程;(2)若曲线与直线相交于不同的两点,求的取值范围.20.(12分)已知的内角,,的对边分别为,,,.(1)若,证明:.(2)若,,求的面积.21.(12分)过点P(-4,0)的动直线l与抛物线相交于D、E两点,已知当l的斜率为时...