2024届新疆维吾尔自治区托克逊县第二中学高三冲刺模拟数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知纯虚数满足,其中为虚数单位,则实数等于()A.B.1C.D.22.已知x,,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.函数的图象大致是()A.B.C.D.4.函数在区间上的大致图象如图所示,则可能是()A.,,,则()B.B.C.C.D.D.,方程5.已知集合有四个不同的根,记最大的根的所有取值为集合,则A.6.已知函数“函数有两个零点”是“”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有()种.A.360B.240C.150D.1208.已知函数的值域为,函数,则的图象的对称中心为()A.B.C.D.9.过双曲线的左焦点作直线交双曲线的两天渐近线于,两点,若为线段的中点,且(为坐标原点),则双曲线的离心率为()A.B.C.D.10.对于任意,函数满足,且当时,函数.若,则大小关系是()A.B.C.D.11.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为().A.6500元B.7000元C.7500元D.8000元12.曲线在点处的切线方程为()A.B.C.D.,为中点,则三棱锥二、填空题:本题共4小题,每小题5分,共20分。13.正三棱柱的底面边长为2,侧棱长为的体积为________.14.在中,,,则_________.15.已知,则满足的的取值范围为_______.16.设,分别是定义在上的奇函数和偶函数,且,则________,_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知四棱锥,底面为边长为2的菱形,平面,是的中点,.(Ⅰ)证明:;(Ⅱ)若为上的动点,求与平面所成最大角的正切值.18.(12分)车工刘师傅利用数控车床为某公司加工一种高科技易损零件,对之前加工的100个零件的加工时间进行统计,结果如下:加工1个零件用时(分钟)20253035频数(个)15304015以加工这100个零件用时的频率代替概率.(1)求的分布列与数学期望;(2)刘师傅准备给几个徒弟做一个加工该零件的讲座,用时40分钟,另外他打算在讲座前、讲座后各加工1个该零件作示范.求刘师傅讲座及加工2个零件作示范的总时间不超过100分钟的概率.19.(12分)已知f(x)=x+3-x-2(1)求函数f(x)的最大值m;(2)正数a,b,c满足a+2b+3c=m,求证:20.(12分)已知.(1)解不等式;(2)若均为正数,且,求的最小值.21.(12分)如图,在三棱锥中,,是的中点,点在上,平面,平面平面,为锐角三角形,求证:(1)是的中点;(2)平面平面.22.(10分)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为.的一条直径,若椭圆经过,两点,求椭圆的方程.(Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先根据复数的除法表示出,然后根据是纯虚数求解出对应的的值即可.【详解】因为,所以,又因为是纯虚数,所以,所以.故选:B.【点睛】本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数为纯虚数,则有.2、D【解析】,不能得到,成立也不能推出,即可得到答案.【详解】因为x,,当时,不妨取,,故时...