2024届江苏省南京十校下学期高考数学倒计时模拟卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数,,的部分图象如图所示,则函数表达式为()A.B.C.D.2.已知等差数列中,,则()A.20B.18C.16D.143.设不等式组表示的平面区域为,若从圆:的内部随机选取一点,则取自的概率为()A.B.C.D.4.若复数(为虚数单位)的实部与虚部相等,则的值为()A.5.若不等式B.C.D.在区间内的解集中有且仅有三个整数,则实数的取值范围是()A.B.C.D.6.设集合A.,,则()C.7.函数B.D.的图象与轴交点的横坐标构成一个公差为的等差数列,要得到函数的图象,只需将的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位8.已知函数()的部分图象如图所示.则()A.B.C.D.9.函数图象的大致形状是()A.B.C.D.10.已知集合,集合,则()A.B.C.D.11.已知平面向量满足与的夹角为,且,则实数的值为()A.B.C.D.12.已知复数,则的虚部为()A.B.C.D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知函数是定义在上的奇函数,其图象关于直线对称,当时,(其中是自然对数的底数,若,则实数的值为_____.14.函数的图像如图所示,则该函数的最小正周期为________.15.“北斗三号”卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,若其近地点、远地点离地面的距离大约分别是,,则“北斗三号”卫星运行轨道的离心率为__________.16.在二项式的展开式中,的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱柱中,平面,,,分别为,的中点.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.18.(12分)如图,焦点在轴上的椭圆与焦点在轴上的椭圆都过点,中心都在坐标原点,且椭圆与的离心率均为.的面积取最大值(Ⅰ)求椭圆与椭圆的标准方程;(Ⅱ)过点M的互相垂直的两直线分别与,交于点A,B(点A、B不同于点M),当时,求两直线MA,MB斜率的比值.19.(12分)若数列前n项和为,且满足(t为常数,且)(1)求数列的通项公式:(2)设,且数列为等比数列,令,.求证:.20.(12分)已知抛物线和圆,倾斜角为45°的直线过抛物线的焦点,且与圆相切.(1)求的值;(2)动点在抛物线的准线上,动点在上,若在点处的切线交轴于点,设.求证点在定直线上,并求该定直线的方程.,长轴的右端点与抛物线:的焦点重合,且椭21.(12分)如图,设椭圆:圆的离心率是.(Ⅰ)求椭圆的标准方程;面积的(Ⅱ)过作直线交抛物线于,两点,过且与直线垂直的直线交椭圆于另一点,求最小值,以及取到最小值时直线的方程.22.(10分)已知椭圆C:(a>b>0)过点(0,),且满足a+b=3.(1)求椭圆C的方程;(2)若斜率为的直线与椭圆C交于两个不同点A,B,点M坐标为(2,1),设直线MA与MB的斜率分别为k1,k2,试问k1+k2是否为定值?并说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据图像的最值求出,由周期求出,可得,再代入特殊点求出,化简即得所求.【详解】由图像知,,,解得,因为函数过点,所以,,即,解得,因为,所以,.故选:A即可.【点睛】本题考查根据图像求正弦型函数的解析式,三角函数诱导公式,属于基础题.2、A【解析】设等差数列的公差为,再利用基本量法与题中给的条件列式求解首项与公差,进而求得【详解】设等差数列的公差为.由得,解得.所以.故选:A【点睛】本题主要考查了等差数列的...