2024届江苏省泰兴市三中高考冲刺模拟数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数满足当时,,且当时,;当时,且).若函数的图象上关于原点对称的点恰好有3对,则的取值范围是()A.B.C.D.2.在中,角的对边分别为,若,则的形状为()A.直角三角形B.等腰非等边三角形C.等腰或直角三角形D.钝角三角形3.已知抛物线C:,过焦点F的直线l与抛物线C交于A,B两点(A在x轴上方),且满足,则直线l的斜率为()A.1B.C.2D.34.已知双曲线与双曲线有相同的渐近线,则双曲线的离心率为()A.B.C.D.5.执行如图所示的程序框图,若输出的结果为3,则可输入的实数值的个数为()A.1B.2C.3D.46.已知,且,则在方向上的投影为()A.B.C.D.7.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①直线与直线的斜率乘积为;②轴;③以为直径的圆与抛物线准线相切.其中,所有正确判断的序号是()A.①②③B.①②C.①③D.②③,的零点分别为,,,则()8.已知函数,A.B.C.D.9.在平面直角坐标系中,将点绕原点逆时针旋转到点,设直线与轴正半轴所成的最小正角为,则等于()A.B.C.D.10.设集合,,则()A.B.C.D.11.在等差数列中,若,则()A.8B.1212.设函数C.14D.10(,为自然对数的底数),定义在上的函数满足,且当时,.若存在,且为函数的一个零点,则实数的取值范围为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.设实数,若函数的最大值为,则实数的最大值为______.14.的展开式中所有项的系数和为______,常数项为______.15.抛物线上到其焦点的距离为的点的个数为________.16.如果抛物线上一点到准线的距离是6,那么______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线和直线的极坐标方程;(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.18.(12分)求函数的最大值.19.(12分)已知函数.若在定义域内存在,使得成立,则称为函数的局部对称点.且a≠0,证明:函数有局部对称点;(1)若a,(2)若函数在定义域内有局部对称点,求实数c的取值范围;(3)若函数在R上有局部对称点,求实数m的取值范围.20.(12分)设,(1)求的单调区间;(2)设恒成立,求实数的取值范围.恒成立,求的最大值;21.(12分)已知函数(1)当时,若(2)记的解集为集合A,若,求实数的取值范围.22.(10分)在四棱锥的底面是菱形,底面,,分别是的中点,.(Ⅰ)求证:;所成角的正弦值;(Ⅱ)求直线与平面(III)在边上是否存在点,使与所成角的余弦值为,若存在,确定点的位置;若不存在,说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先作出函数在上的部分图象,再作出关于原点对称的图象,分类利用图像列出有3个交点时满足的条件,解之即可.【详解】先作出函数在上的部分图象,再作出关于原点对称的图象,如图所示,当时,对称后的图象不可能与在的图象有3个交点;当时,要使函数关于原点对称后的图象与所作的图象有3个交点,则,解得.故选:C.【点睛】本题考查利用函数图象解决函数的交点个数问题,考查学生数形结合的思想、转化与化归的思想,是一道中档题.2、C【解析】利用正弦定理将边化角,再由,化简可得,最后分类讨论可得;【详解】解:因为所以所以所以所以所以当时,为直角三角形;当时即,为等腰三角形;的形状是等腰三角形或直角三角形故选:.【点睛】本...