2024届江苏省淮安市淮阴中学高考数学一模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆:的左、右焦点分别为,,点,在椭圆上,其中,,若,,则椭圆的离心率的取值范围为()A.B.C.D.2.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为()A.B.C.D.3.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为()A.2B.3C.4D.54.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是()A.B.C.D.5.设,则"是""的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.若复数()是纯虚数,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限7.设等比数列的前项和为,若,则的值为()A.B.C.D.8.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2B.3C.D.9.点为不等式组所表示的平面区域上的动点,则的取值范围是()A.B.C.D.10.设双曲线(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是()A.B.C.D.11.已知函数且,则实数的取值范围是()A.12.函数B.C.D.与在上最多有n个交点,交点分别为(,……,n),则()A.7B.8C.9D.10二、填空题:本题共4小题,每小题5分,共20分。13.如图,椭圆:的离心率为,F是的右焦点,点P是上第一角限内任意一点,,,若,则的取值范围是_______.14.若在上单调递减,则的取值范围是_______15.等边的边长为2,则在方向上的投影为________.16.在的展开式中,的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付.出门不带现金的人数正在迅速增加。中国人民大学和法国调查公司益普索合作,调查了腾讯服务的6000名用户,从中随机抽取了60名,统计他们出门随身携带现金(单位:元)如茎叶图如示,规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”.(1)根据上述样本数据,将列联表补充完整,并判断有多大的把握认为“手机支付族”与“性别”有关?(2)用样本估计总体,若从腾讯服务的用户中随机抽取3位女性用户,这3位用户中“手机支付族”的人数为,求随机变量的期望和方差;(3)某商场为了推广手机支付,特推出两种优惠方案,方案一:手机支付消费每满1000元可直减100元;方案二:手机支付消费每满1000元可抽奖2次,每次中奖的概率同为,且每次抽奖互不影响,中奖一次打9折,中奖两次打8.5折.如果你打算用手机支付购买某样价值1200元的商品,请从实际付款金额的数学期望的角度分析,选择哪种优惠方案更划算?附:0.0500.0100.0013.8416.63510.82818.(12分)已知x,y,z均为正数.(1)若xy<1,证明:x+z⋅y+z>4xyz;(2)若=,求2xy⋅2yz⋅2xz的最小值.19.(12分)在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为与圆C的交点为O、P,与直线l的交点为Q,极轴建立极坐标系.,射线(1)求圆C的极坐标方程;(2)直线l的极坐标方程是求线段的长.20.(12分)已知的面积为,且.(1)求角的大小及...